\begin{frame}{Space Complexity}
Let $f,g : \mathbb{N} \to \mathbb{N}$.
\begin{block}{}
A nondeterministic Turing machine $M$
\begin{center}
\emph{runs in space} $f$
\end{center}
if for \alert{every input $w$}, every computation of $M$
visits \alert{at most $f(|w|)$ positions on the tape}.
\end{block}
\pause\medskip
\begin{goal}{}
The function $f$ gives an upper bound on the number of visited cells on the tape
in terms of the length of the input word.
\end{goal}
\end{frame}