
Automata Theory :: Undecidability

Jörg Endrullis

Vrije Universiteit Amsterdam

Decidability

A decision problem P is a language P ⊆ Σ∗.

The problem P is called
decidable if the P is recursive, otherwise undeciable,

semidecidable if the P is recursively enumerable.

Decidable problem:
algorithm that always halts

always answers yes or no

Semidecidable problem:
algorithm halts (eventually) it the answer is yes (w ∈ P),

may or may not halt if the answer is no (w 6∈ P).

(Problem: one cannot know how long to wait for an answer.)

Decidability

A decision problem P is decidable if
P is semidecidable, and

P is semidecidable.

The following question is undecidable, but semidecidable:

Halting problem
Does TM M reach a halting state for input w? (Input: M and w .)

(Semidecidable: execute M on w and wait.)

The following question not decidable and not semidecidable:

Universal halting problem
Does TM M reach a halting state on all w ∈ Σ∗? (Input: M.)

(The complement is also not semidecidable.)

The Halting Problem (1936)

The halting problem is: given
a deterministic Turing machine M and

a word x ,
does M reach a halting state when started with input x?

The halting problem can be viewed as a language H

H = { (M, x) | M reaches a halting state on input x }

M is an encoding of a deterministic Turing machine as a word.

Theorem
The halting problem H is undecidable.

(The language H is not recursive.)

The Halting Problem is Undecidable - Proof 1

The Halting Problem is Undecidable

Proof.
Assume the halting problem was decidable. Then there is a
Turing machine H that, given (M, x) decides if M halts on x .

Then every recursively enumerable language was recursive!

Let M be a deterministic Turing machine and x a word.

We can decide x ∈ L(M) as follows:
If according to H, M does not halt on x ,
then x 6∈ L(M).

If according to H, M halts on x ,
then execute M on x to see whether x ∈ L(M).

The algorithm always terminates, so L(M) is recursive.

Contradiction: not every recursively enumerable language is
recursive.

The Halting Problem is Undecidable - Proof 2

The Halting Problem is Undecidable

Assume there would be a program T with the behaviour:
input: a program M
output: yes if M terminates on input M, no otherwise

p = read input;
...

print result;
program T

if result = yes
then loop forever
else terminate

program T ′

What happens if we run T ′ with input T ′?
initial part T decides whether T ′ terminates on input T ′

if the result is yes, then T ′ runs forever Contradiction
if the result is no, then T ′ terminates Contradiction

Thus T cannot exist! The halting problem is undecidable!

Theorem of Rice

Theorem of Rice (1951)

A property of a class K is trivial if it holds for all or no k ∈ K .

Theorem of Rice
Every non-trivial property P of recursively enumerable
languages is undecidable.

Proof.
Assume that P(∅) (if not, take ¬P).
Let L0 be a recursively enumerable language with ¬P(L0).

Let L be recursively enumerable. We decide x ∈ L!

Construct a TM Mx such that Mx accepts y if x ∈ L and y ∈ L0.

L(Mx) = ∅ if x 6∈ L L(Mx) = L0 if x ∈ L

Then x 6∈ L ⇐⇒ P(L(Mx)).

Contradiction: decidability of P =⇒ L recursive.

Theorem of Rice: Example

For recursively enumerable languages L, the following
questions are undecidable:

1. Is a ∈ L?
2. Is L finite?

Post Correspondence Problem

Post Correspondence Problem (1946)

Post Correspondence Problem (PCP)
Given n pairs of words:

(w1, v1), . . . , (wn, vn)

Are there indices i1, i2 . . . , ik (k ≥ 1) s.t.

wi1wi2 · · ·wik = vi1vi2 · · · vik ?
Emil Post

(1897-1954)

Exercise
Find a solution for

(w1, v1) = (01,100)
(w2, v2) = (1,011)
(w3, v3) = (110,1)

Modified Post Correspondence Problem

We will show that the PCP is undecidable.

We first prove that the modified PCP (MPCP) is undecidable.

Modified PCP (MPCP)
Given n pairs of words:

(w1, v1), . . . , (wn, vn)

Are there indices i1, i2 . . . , ik (k ≥ 1) such that

w1wi1wi2 · · ·wik = v1vi1vi2 · · · vik ?

Modified Post Correspondence Problem

Theorem
The modified PCP is undecidable.

Proof.
G = (V ,T ,S,P) any unrestricted grammar. Decide w ∈ L(G)?

We define (where F and E are fresh):

w1 = F v1 = FS ⇒
w2 = ⇒ wE v2 = E

... x ... y (x → y ∈ P)

a a (a ∈ T)

A A (A ∈ V)⇒ ⇒
This MPCP has a solution ⇐⇒ w ∈ L(G).

Contradiction: If the MPCP was decidable, then w ∈ L(G) was
decidable for unrestricted grammars G!

Example

S → AA A → aB | Bb BB → aa

This grammar with w = aaab translates to the following MPCP:

i wi vi i wi vi

1 F FS ⇒ 7 ⇒ ⇒
2 ⇒ aaabE E 8 a a
3 S AA 9 b b
4 A aB 10 A A
5 A Bb 11 B B
6 BB aa 12 S S

Example derivation: S ⇒ AA ⇒ aBA ⇒ aBBb ⇒ aaab.

wi :
1

F
3

S
7⇒ 4

A
10

A
7⇒ 8

a
11

B
5

A
7⇒ 8

a
6

B B
9

b
2⇒ a a a b E

vi : F S ⇒
1

A A
3

⇒
7

a B
4

A
10

⇒
7

a
8

B
11

B b
5

⇒
7

a
8

a a
6

b
9

E
2

Post Correspondence Problem

Theorem
The PCP is undecidable.

Proof.
Given an MPCP X : (w1, v1), . . . , (wn, vn) where

wi = ai1 · · · aimi and vi = bi1 · · · biri (with mi + ri > 0)
We define PCP X ′ (y0, z0), . . . , (yn+1, zn+1) by:

y0 = @$y1 yi = ai1$ai2$ · · · aimi $ yn+1 = #

z0 = @z1 zi = $bi1$bi2 · · · $biri zn+1 = $#
for 1 ≤ i ≤ n. The letters @, $ and # are fresh.

Every PCP X ′ solution must start with (y0, z0):
y0yj · · · ykyn+1 = z0zj · · · zkzn+1

Solution exists ⇐⇒ w1wj · · ·wk = v1vj · · · vk is a solution of X .

As the MPCP is undecidable, so must be the PCP.

Example

Consider the following instance of the MPCP:

w1 = 11 w2 = 1
v1 = 1 v2 = 11

It reduces to the following PCP problem:

y0 = @$1$1$ y1 = 1$1$ y2 = 1$ y3 = #

z0 = @$1 z1 = $1 z2 = $1$1 z3 = $#

Example solution MPCP:

w1w2 = 111 = v1v2

Corresponding solution PCP:

y0y2y3 = @$1$1$1$# = z0z2z3

In general: the original MPCP instance has a solution⇐⇒ the resulting PCP instance has a solution

Undecidable Properties of Context-Free Languages

Undecidable Properties of Context-Free Languages

Undecidable properties of context-free languages:
empty intersection

ambiguity

palindromes

equality

. . .

Empty Intersection of Context-Free Languages

Theorem
The question L1 ∩ L2 = ∅ ? for context-free languages L1, L2 is
undecidable.

Proof.
We reduce the PCP to the above problem.

Given a PCP instance X : (w1, v1), . . . , (wn, vn).

We define two context-free grammars G1 and G2:

S1 → wiS1〈i〉 | wi # 〈i〉
S2 → vi S2〈i〉 | vi # 〈i〉

for 1 ≤ i ≤ n. Here #, 〈 and 〉 are fresh symbols. Then

L(G1) = {wj · · ·wk # 〈k〉 · · · 〈j〉 | 1 ≤ j , . . . , k ≤ n}
L(G2) = {v` · · · vm # 〈m〉 · · · 〈`〉 | 1 ≤ `, . . . ,m ≤ n}

L(G1) ∩ L(G2) = ∅ ⇐⇒ the PCP X has no solution.

Ambiguity of Context-Free Grammars

Theorem
Ambiguity of context-free grammars is undecidable.

Proof.
We reduce the PCP to the above problem.

Given a PCP instance X : (w1, v1), . . . , (wn, vn).

We define a context-free grammar G:

S → S1 | S2 S1 → wiS1〈i〉 | wi # 〈i〉
S2 → vi S2〈i〉 | vi # 〈i〉

for 1 ≤ i ≤ n. Here #, 〈 and 〉 are fresh symbols.

Then G is ambiguous ⇐⇒ the PCP X has a solution.

Palindromes in Context-Free Languages

Theorem
It is undecidable whether a context-free languages contains a
palindrome (a word w = wR).

Proof.
We reduce the PCP to the above problem.

Given a PCP instance X : (w1, v1), . . . , (wn, vn).

We define a context-free grammar G:

S → wi S vR
i | wi # vR

i

for 1 ≤ i ≤ n. Here # is a fresh symbol.

L(G) contains a palindrome ⇐⇒ PCP X has a solution.

Equality of Context-Free Languages

Theorem
The question L = Σ∗ ? (and hence L1 = L2 ?) for context-free
languages L (L1,L2) is undecidable.

Proof
Given a PCP X : (w1, v1), . . . , (wn, vn). Define G1 and G2:

S1 → wiS1〈i〉 | wi # 〈i〉
S2 → vi S2〈i〉 | vi # 〈i〉

as before. Then

PCP X has no solution ⇐⇒ L(G1) ∩ L(G2) = ∅⇐⇒ L(G1) ∩ L(G2) = ∅⇐⇒ L(G1) ∪ L(G2) = Σ
∗

It suffices to show that L(G1) ∪ L(G2) is context-free.

It suffices that L(G1) is context-free (L(G2) is analogous).

Equality of Context-Free Languages (2)

Proof continued

S1 → wiS1〈i〉 | wi # 〈i〉

The words in L(G1) are of the form
wj · · ·wk # 〈k〉 · · · 〈j〉 for non-empty indices 1 ≤ j , . . . , k ≤ n

All these words are of the shape
LS = Σ∗ · { # } · { 〈1〉, . . . , 〈n〉 }+.

We have L(G1) ⊆ LS, so
L(G1) = Σ

∗ \ L(G1) = (LS ∪ LS) \ L(G1) = (LS \ L(G1)) ∪ LS

As LS is regular, also LS is regular (and context-free).

So it suffices to show that LS \ L(G1) is context-free.

The words in LS \ L(G1) are of the form:
LS \ L(G1) = {w # 〈k〉 · · · 〈j〉 | w 6= wj · · ·wk }

We distinguish three cases. . .

Equality of Context-Free Languages (3)

Proof continued
The words in LS \ L(G1) are of the form:

LS \ L(G1) = {w # 〈k〉 · · · 〈j〉 | w 6= wj · · ·wk }

We distinguish three cases:

LS \ L(G1) = Lsmaller ∪ Llarger ∪ Lequal

where

Lsmaller = {w # 〈k〉 · · · 〈j〉 | |w | < |wj · · ·wk |}

Llarger = {w # 〈k〉 · · · 〈j〉 | |w | > |wj · · ·wk |}

Lequal = {w # 〈k〉 · · · 〈j〉 | |w | = |wj · · ·wk | & w 6= wj . . .wk }

Each of these languages is context-free, thus LS \ L(G1) is.

Exercise
Give context-free grammars for Lsmaller, Llarger and Lequal.

Semidecidability

Semidecidability

Recall that a decision P ⊆ Σ∗ is called
decidable if the P is recursive,

semidecidable if the P is recursively enumerable.

Examples of (undecidable but) semidecidable problems:
halting problem,

Post correspondence problem,

non-empty intersection of context-free languages,

ambiguity of context-free grammars.

There exist algorithms for these problems that always halt if the
answer is yes, but may or may not halt if the answer is no.

More Undecidable Problems

Validity of a formula φ in predicate logic is undecidable.

In 1900 David Hilbert (1862-1941) formulated 23 scientific
problems. Among them the following:

Diophantine equations consist of polynomials with one or
more variables and coefficients in Z. For example:

3x2y − 7y2z3 − 18 = 0

−7y2 + 8z3 = 0

Hilbert’s 10th problem: Give an algorithm to decide whether a
system of Diophantine equations has a solution in Z.

In 1970 Yuri Matiyasevich proved that this is undecidable.

	pbs@ARFix@1:
	pbs@ARFix@4:
	pbs@ARFix@8:
	pbs@ARFix@11:
	pbs@ARFix@12:
	pbs@ARFix@18:
	pbs@ARFix@19:
	pbs@ARFix@30:
	pbs@ARFix@31:
	pbs@ARFix@41:
	pbs@ARFix@42:
	pbs@ARFix@43:
	pbs@ARFix@45:
	pbs@ARFix@48:
	pbs@ARFix@52:
	pbs@ARFix@69:
	pbs@ARFix@75:
	pbs@ARFix@78:
	pbs@ARFix@79:
	pbs@ARFix@80:
	pbs@ARFix@86:
	pbs@ARFix@91:
	pbs@ARFix@96:
	pbs@ARFix@104:
	pbs@ARFix@110:
	pbs@ARFix@114:
	pbs@ARFix@115:
	pbs@ARFix@118:
	pbs@ARFix@123:

