Automata Theory :: Undecidability

Jörg Endrullis

Vrije Universiteit Amsterdam

Decidability

A decision problem *P* is a language $P \subseteq \Sigma^*$.

The problem P is called

- **decidable** if the *P* is recursive, otherwise **undeciable**,
- **semidecidable** if the *P* is recursively enumerable.

Decidable problem:

- algorithm that always halts
- always answers yes or no

Semidecidable problem:

- algorithm halts (eventually) it the answer is yes ($w \in P$),
- may or may not halt if the answer is no $(w \notin P)$.

(Problem: one cannot know how long to wait for an answer.)

Decidability

A decision problem P is decidable if

- P is semidecidable, and
- \overline{P} is semidecidable.

The following question is undecidable, but semidecidable:

Halting problem

Does TM *M* reach a halting state for input *w*? (Input: *M* and *w*.)

(Semidecidable: execute M on w and wait.)

The following question not decidable and not semidecidable:

Universal halting problem

Does TM *M* reach a halting state on all $w \in \Sigma^*$? (Input: *M*.)

(The complement is also not semidecidable.)

The Halting Problem (1936)

The halting problem is: given

- a deterministic Turing machine M and
- a word x,

does M reach a halting state when started with input x?

The halting problem can be viewed as a language H

 $H = \{ (M, x) \mid M \text{ reaches a halting state on input } x \}$

M is an encoding of a deterministic Turing machine as a word.

Theorem

The halting problem H is undecidable.

(The language *H* is not recursive.)

The Halting Problem is Undecidable - Proof 1

The Halting Problem is Undecidable

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Then every recursively enumerable language was recursive!

Let M be a deterministic Turing machine and x a word.

We can decide $x \in L(M)$ as follows:

If according to *H*, *M* does not halt on *x*, then *x* ∉ *L*(*M*).

If according to \mathcal{H} , M halts on x, then execute M on x to see whether $x \in L(M)$.

The algorithm always terminates, so L(M) is recursive.

Contradiction: not every recursively enumerable language is recursive.

The Halting Problem is Undecidable - Proof 2

The Halting Problem is Undecidable

Assume there would be a program T with the behaviour:

- input: a program M
- output: yes if M terminates on input M, no otherwise

What happens if we run T' with input T'?

- initial part T decides whether T' terminates on input T'
- if the result is yes, then T' runs forever Contradiction
- if the result is no, then T' terminates Contradiction

Thus *T* cannot exist! The halting problem is undecidable!

Theorem of Rice

Theorem of Rice (1951)

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property *P* of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

Let *L* be recursively enumerable. We decide $x \in L!$

Construct a TM M_x such that M_x accepts y if $x \in L$ and $y \in L_0$.

$$L(M_x) = \varnothing$$
 if $x \notin L$ $L(M_x) = L_0$ if $x \in L$

Then $x \notin L \iff P(L(M_x))$.

Contradiction: decidability of $P \implies L$ recursive.

For recursively enumerable languages *L*, the following questions are undecidable:

- 1. Is *a* ∈ *L*?
- 2. Is L finite?

Post Correspondence Problem

Post Correspondence Problem (1946)

Post Correspondence Problem (PCP) Given *n* pairs of words:

 $(w_1, v_1), \dots, (w_n, v_n)$ Are there indices $i_1, i_2 \dots, i_k$ $(k \ge 1)$ s.t. $w_{i_1} w_{i_2} \dots w_{i_k} = v_{i_1} v_{i_2} \dots v_{i_k}$?

Emil Post (1897-1954)

Exercise

Find a solution for

 $(w_1, v_1) = (01, 100)$ $(w_2, v_2) = (1, 011)$ $(w_3, v_3) = (110, 1)$

Modified Post Correspondence Problem

We will show that the PCP is undecidable.

We first prove that the modified PCP (MPCP) is undecidable.

Modified PCP (MPCP)

Given *n* pairs of words:

 $(w_1, v_1), \ldots, (w_n, v_n)$

Are there indices i_1, i_2, \ldots, i_k ($k \ge 1$) such that

 $W_1 W_{i_1} W_{i_2} \cdots W_{i_k} = V_1 V_{i_1} V_{i_2} \cdots V_{i_k}$?

Modified Post Correspondence Problem

Theorem

The modified PCP is undecidable.

Proof.

G = (V, T, S, P) any unrestricted grammar. Decide $w \in L(G)$? We define (where *F* and *E* are fresh):

<i>w</i> ₁ =	F	$V_{1} =$	$\textit{FS} \Rightarrow$	
$W_{2} =$	\Rightarrow wE	$V_{2} =$	E	
÷	X	:	y	$(x \rightarrow y \in P)$
	а		а	(a ∈ T)
	A		Α	$(A \in V)$
	\Rightarrow		\Rightarrow	

This MPCP has a solution $\iff w \in L(G)$.

Contradiction: If the MPCP was decidable, then $w \in L(G)$ was decidable for unrestricted grammars G!

Example

$$S \rightarrow AA$$
 $A \rightarrow aB \mid Bb$ $BB \rightarrow aa$

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi	i	Wi	Vi
1	F	$FS \Rightarrow$	7	\Rightarrow	\Rightarrow
2	\Rightarrow aaab E	Е	8	а	а
3	S	AA	9	b	b
4	A	aВ	10	A	A
5	А	Bb	11	В	В
6	BB	aa	12	S	S

Example derivation: $S \Rightarrow AA \Rightarrow aBA \Rightarrow aBBb \Rightarrow aaab$.

$$W_{i}: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{\Rightarrow} \frac{11}{a} \frac{5}{B} \xrightarrow{7} \frac{8}{\Rightarrow} \frac{6}{B} \frac{9}{B} \xrightarrow{2} \frac{2}{\Rightarrow} \frac{2}{aaab} \frac{11}{B}$$

$$V_{i}: \frac{FS}{1} \xrightarrow{7} \frac{AA}{3} \xrightarrow{7} \frac{aB}{4} \frac{A}{10} \xrightarrow{7} \frac{aB}{8} \frac{BB}{11} \frac{Bb}{5} \xrightarrow{7} \frac{aaab}{8} \frac{B}{9} \frac{E}{2}$$

Post Correspondence Problem

Theorem

The PCP is undecidable.

Proof.

Given an MPCP X: $(w_1, v_1), \ldots, (w_n, v_n)$ where

 $w_i = a_{i1} \cdots a_{im_i}$ and $v_i = b_{i1} \cdots b_{ir_i}$ (with $m_i + r_i > 0$) We define PCP X' $(y_0, z_0), \dots, (y_{n+1}, z_{n+1})$ by:

 $y_0 = @\$y_1$ $y_i = a_{i1}\$a_{i2}\$\cdots a_{im_i}\$$ $y_{n+1} = #$ $z_0 = @z_1$ $z_i = \$b_{i1}\$b_{i2}\cdots\$b_{ir_i}$ $z_{n+1} = \$#$

for $1 \le i \le n$. The letters @, \$ and # are fresh.

Every PCP X' solution must start with (y_0, z_0) :

 $\mathbf{y}_0 \mathbf{y}_j \cdots \mathbf{y}_k \mathbf{y}_{n+1} = \mathbf{z}_0 \mathbf{z}_j \cdots \mathbf{z}_k \mathbf{z}_{n+1}$

Solution exists $\iff w_1 w_j \cdots w_k = v_1 v_j \cdots v_k$ is a solution of *X*. As the MPCP is undecidable, so must be the PCP.

Example

Consider the following instance of the MPCP:

$$w_1 = 11$$
 $w_2 = 1$
 $v_1 = 1$ $v_2 = 11$

It reduces to the following PCP problem:

 $y_0 = @\$1\$1\$$ $y_1 = 1\$1\$$ $y_2 = 1\$$ $y_3 = #$ $z_0 = @\$1$ $z_1 = \$1$ $z_2 = \$1\1 $z_3 = \$#$

Example solution MPCP:

$$w_1 w_2 = 111 = v_1 v_2$$

Corresponding solution PCP:

$$y_0y_2y_3 = @$1$1$1$# = z_0z_2z_3$$

In general: the original MPCP instance has a solution \iff the resulting PCP instance has a solution

Undecidable Properties of Context-Free Languages

Undecidable Properties of Context-Free Languages

Undecidable properties of context-free languages:

- empty intersection
- ambiguity
- palindromes
- equality
- . . .

Empty Intersection of Context-Free Languages

Theorem

The question $L_1 \cap L_2 = \emptyset$? for context-free languages L_1 , L_2 is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \ldots, (w_n, v_n)$.

We define two context-free grammars G_1 and G_2 :

 $\begin{array}{l} S_1 \rightarrow \textit{w}_i S_1 \langle i \rangle \mid \textit{w}_i \# \langle i \rangle \\ S_2 \rightarrow \textit{v}_i S_2 \langle i \rangle \mid \textit{v}_i \# \langle i \rangle \end{array}$

for 1 \leq *i* \leq *n*. Here #, \langle and \rangle are fresh symbols. Then

$$\begin{split} L(G_1) &= \{ w_j \cdots w_k \ \# \ \langle k \rangle \cdots \langle j \rangle \ | \ 1 \leq j, \dots, k \leq n \} \\ L(G_2) &= \{ v_\ell \cdots v_m \ \# \ \langle m \rangle \cdots \langle \ell \rangle \ | \ 1 \leq \ell, \dots, m \leq n \} \\ L(G_1) \cap L(G_2) &= \varnothing \iff \text{ the PCP } X \text{ has no solution.} \end{split}$$

Ambiguity of Context-Free Grammars

Theorem

Ambiguity of context-free grammars is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \ldots, (w_n, v_n)$.

We define a context-free grammar G:

for $1 \le i \le n$. Here #, $\langle \text{ and } \rangle$ are fresh symbols. Then *G* is ambiguous \iff the PCP *X* has a solution.

Theorem

It is undecidable whether a context-free languages contains a palindrome (a word $w = w^R$).

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \ldots, (w_n, v_n)$.

We define a context-free grammar G:

 $S \rightarrow w_i S v_i^R \mid w_i \# v_i^R$

for $1 \le i \le n$. Here # is a fresh symbol.

L(G) contains a palindrome \iff PCP X has a solution.

Equality of Context-Free Languages

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP X: $(w_1, v_1), \ldots, (w_n, v_n)$. Define G_1 and G_2 :

 $\begin{array}{l} S_1 \rightarrow \textit{w}_i S_1 \langle i \rangle \mid \textit{w}_i \# \langle i \rangle \\ S_2 \rightarrow \textit{v}_i S_2 \langle i \rangle \mid \textit{v}_i \# \langle i \rangle \end{array}$

as before. Then

PCP X has no solution $\iff L(G_1) \cap L(G_2) = \varnothing$ $\iff \overline{L(G_1) \cap L(G_2)} = \overline{\varnothing}$ $\iff \overline{L(G_1)} \cup \overline{L(G_2)} = \Sigma^*$

It suffices to show that $\overline{L(G_1)} \cup \overline{L(G_2)}$ is context-free.

It suffices that $\overline{L(G_1)}$ is context-free ($\overline{L(G_2)}$ is analogous).

Equality of Context-Free Languages (2)

Proof continued

 $S_1
ightarrow w_i S_1 \langle i
angle \mid w_i \# \langle i
angle$

The words in $L(G_1)$ are of the form

 $w_j \cdots w_k \# \langle k \rangle \cdots \langle j \rangle$ for non-empty indices $1 \le j, \dots, k \le n$ All these words are of the shape

 $L_{\mathcal{S}} = \Sigma^* \cdot \{\#\} \cdot \{\langle 1 \rangle, \ldots, \langle n \rangle\}^+.$

We have $L(G_1) \subseteq L_S$, so

 $\overline{L(G_1)} = \Sigma^* \setminus L(G_1) = (L_S \cup \overline{L_S}) \setminus L(G_1) = (L_S \setminus L(G_1)) \cup \overline{L_S}$

As L_S is regular, also $\overline{L_S}$ is regular (and context-free).

So it suffices to show that $L_S \setminus L(G_1)$ is context-free.

The words in $L_S \setminus L(G_1)$ are of the form:

 $L_{S} \setminus L(G_{1}) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_{j} \cdots w_{k} \}$ We distinguish three cases...

Equality of Context-Free Languages (3)

Proof continued

The words in $L_S \setminus L(G_1)$ are of the form:

 $L_{\mathcal{S}} \setminus L(G_1) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_j \cdots w_k \}$

We distinguish three cases:

 $L_{\mathcal{S}} \setminus L(G_1) = \underline{L_{\text{smaller}}} \cup \underline{L_{\text{larger}}} \cup \underline{L_{\text{equal}}}$

where

$$\begin{split} L_{\text{smaller}} &= \{ w \ \# \ \langle k \rangle \cdots \langle j \rangle \ \mid \ |w| < |w_j \cdots w_k| \} \\ L_{\text{larger}} &= \{ w \ \# \ \langle k \rangle \cdots \langle j \rangle \ \mid \ |w| > |w_j \cdots w_k| \} \\ L_{\text{equal}} &= \{ w \ \# \ \langle k \rangle \cdots \langle j \rangle \ \mid \ |w| = |w_j \cdots w_k| \ \& \ w \neq w_j \ldots w_k \} \end{split}$$

Each of these languages is context-free, thus $L_S \setminus L(G_1)$ is.

Exercise

Give context-free grammars for $L_{smaller}$, L_{larger} and L_{equal} .

Semidecidability

Semidecidability

Recall that a decision $P \subseteq \Sigma^*$ is called

- **decidable** if the *P* is recursive,
- **semidecidable** if the *P* is recursively enumerable.

Examples of (undecidable but) semidecidable problems:

- halting problem,
- Post correspondence problem,
- non-empty intersection of context-free languages,
- ambiguity of context-free grammars.

There exist algorithms for these problems that always halt if the answer is yes, but may or may not halt if the answer is no.

Validity of a formula ϕ in predicate logic is undecidable.

In 1900 **David Hilbert** (1862-1941) formulated 23 scientific problems. Among them the following:

Diophantine equations consist of polynomials with one or more variables and coefficients in \mathbb{Z} . For example:

$$3x^2y - 7y^2z^3 - 18 = 0$$
$$-7y^2 + 8z^3 = 0$$

Hilbert's 10th problem: Give an algorithm to decide whether a system of Diophantine equations has a solution in \mathbb{Z} .

In 1970 Yuri Matiyasevich proved that this is undecidable.