Automata Theory :: Undecidability

Jörg Endrullis

Vrije Universiteit Amsterdam

Decidability

A decision problem P is a language $P \subseteq \Sigma^{*}$.
The problem P is called

- decidable if the P is recursive, otherwise undeciable,
- semidecidable if the P is recursively enumerable.

Decidable problem:

- algorithm that always halts
- always answers yes or no

Semidecidable problem:

- algorithm halts (eventually) it the answer is yes ($w \in P$),
- may or may not halt if the answer is no ($w \notin P$).
(Problem: one cannot know how long to wait for an answer.)

Decidability

A decision problem P is decidable if

- P is semidecidable, and

■ \bar{P} is semidecidable.

The following question is undecidable, but semidecidable:

Halting problem

Does TM M reach a halting state for input w ? (Input: M and w.)
(Semidecidable: execute M on w and wait.)
The following question not decidable and not semidecidable:
Universal halting problem
Does TM M reach a halting state on all $w \in \Sigma^{*}$? (Input: M.)
(The complement is also not semidecidable.)

The Halting Problem (1936)

The halting problem is: given

- a deterministic Turing machine M and
- a word x,
does M reach a halting state when started with input x ?

The halting problem can be viewed as a language H

$$
H=\{(M, x) \mid M \text { reaches a halting state on input } x\}
$$

M is an encoding of a deterministic Turing machine as a word.
Theorem
The halting problem H is undecidable.
(The language H is not recursive.)

The Halting Problem is Undecidable - Proof 1

The Halting Problem is Undecidable

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Then every recursively enumerable language was recursive!
Let M be a deterministic Turing machine and x a word.
We can decide $x \in L(M)$ as follows:

- If according to \mathcal{H}, M does not halt on x, then $x \notin L(M)$.
- If according to \mathcal{H}, M halts on x, then execute M on x to see whether $x \in L(M)$.
The algorithm always terminates, so $L(M)$ is recursive.
Contradiction: not every recursively enumerable language is recursive.

The Halting Problem is Undecidable - Proof 2

The Halting Problem is Undecidable

Assume there would be a program T with the behaviour:

- input: a program M
- output: yes if M terminates on input M, no otherwise

What happens if we run T^{\prime} with input T^{\prime} ?

- initial part T decides whether T^{\prime} terminates on input T^{\prime}
- if the result is yes, then T^{\prime} runs forever Contradiction
- if the result is no, then T^{\prime} terminates Contradiction

Thus T cannot exist! The halting problem is undecidable!

Theorem of Rice

Theorem of Rice (1951)

A property of a class K is trivial if it holds for all or no $k \in K$.

Theorem of Rice

Every non-trivial property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\varnothing)$ (if not, take $\neg P$).
Let L_{0} be a recursively enumerable language with $\neg P\left(L_{0}\right)$.
Let L be recursively enumerable. We decide $x \in L$!
Construct a TM M_{x} such that M_{x} accepts y if $x \in L$ and $y \in L_{0}$.

$$
L\left(M_{x}\right)=\varnothing \quad \text { if } x \notin L \quad L\left(M_{x}\right)=L_{0} \quad \text { if } x \in L
$$

Then $x \notin L \Longleftrightarrow P\left(L\left(M_{x}\right)\right)$.
Contradiction: decidability of $P \Longrightarrow L$ recursive.

Theorem of Rice: Example

For recursively enumerable languages L, the following questions are undecidable:

1. Is $a \in L$?
2. Is L finite?

Post Correspondence Problem

Post Correspondence Problem (1946)

Post Correspondence Problem (PCP)

Given n pairs of words:

$$
\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)
$$

Are there indices $i_{1}, i_{2} \ldots, i_{k}(k \geq 1)$ s.t.

$$
w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}}=v_{i_{1}} v_{i_{2}} \cdots v_{i_{k}} ?
$$

Emil Post
(1897-1954)

Exercise

Find a solution for

$$
\begin{aligned}
& \left(w_{1}, v_{1}\right)=(01,100) \\
& \left(w_{2}, v_{2}\right)=(1,011) \\
& \left(w_{3}, v_{3}\right)=(110,1)
\end{aligned}
$$

Modified Post Correspondence Problem

We will show that the PCP is undecidable.

We first prove that the modified PCP (MPCP) is undecidable.

Modified PCP (MPCP)

Given n pairs of words:

$$
\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)
$$

Are there indices $i_{1}, i_{2} \ldots, i_{k}(k \geq 1)$ such that

$$
w_{1} w_{i_{1}} w_{i_{2}} \cdots w_{i_{k}}=v_{1} v_{i_{1}} v_{i_{2}} \cdots v_{i_{k}} ?
$$

Modified Post Correspondence Problem

Theorem

The modified PCP is undecidable.

Proof.

$G=(V, T, S, P)$ any unrestricted grammar. Decide $w \in L(G)$?
We define (where F and E are fresh):

$$
\begin{array}{llll}
w_{1}= & F & v_{1}= & F S \Rightarrow \\
w_{2}= & \Rightarrow w E & v_{2}= & E \\
\vdots & x & \vdots & y \\
& a & & \\
& & & \\
& & & (x \rightarrow y \in P) \\
& \Rightarrow & & A \\
& & & (A \in T) \\
& & &
\end{array}
$$

This MPCP has a solution $\Longleftrightarrow w \in L(G)$.
Contradiction: If the MPCP was decidable, then $w \in L(G)$ was decidable for unrestricted grammars G !

Example

$$
S \rightarrow A A \quad A \rightarrow a B \mid B b \quad B B \rightarrow a a
$$

This grammar with $w=$ aaab translates to the following MPCP:

i	w_{i}	v_{i}				
1	F	$F S \Rightarrow$				
2	\Rightarrow aaabE	E				
3	S	$A A$				
4	A	$a B$				
5	A	$B b$				
6	$B B$	$a a$	\quad	i	w_{i}	v_{i}
:---:	:---:	:---:				
7	\Rightarrow	\Rightarrow				
8	a	a				
9	b	b				
10	A	A				
11	B	B				
12	S	S				

Example derivation: $S \Rightarrow A A \Rightarrow a B A \Rightarrow a B B b \Rightarrow$ aaab.

$$
\begin{aligned}
& w_{i}: \frac{1}{F} \frac{3}{S} \frac{7}{\Rightarrow} \frac{4}{A} \frac{10}{A} \frac{7}{\Rightarrow} \frac{8}{a} \frac{11}{B} \frac{5}{A} \Rightarrow \frac{8}{a} \frac{6}{B B} \frac{9}{b} \Rightarrow \text { aaabE } \\
& v_{i}: \frac{F S}{\Rightarrow} \frac{A A}{3} \frac{A}{7} \frac{a B}{4} \frac{A}{10} \frac{}{7} \frac{a}{8} \frac{B}{11} \frac{B b}{5} \Rightarrow \frac{a}{7} \frac{a a}{6} \frac{b}{9} \frac{E}{2}
\end{aligned}
$$

Post Correspondence Problem

Theorem

The PCP is undecidable.

Proof.

Given an MPCP $X:\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)$ where

$$
w_{i}=a_{i 1} \cdots a_{i m_{i}} \quad \text { and } \quad v_{i}=b_{i 1} \cdots b_{i r_{i}} \quad\left(\text { with } m_{i}+r_{i}>0\right)
$$

We define PCP $X^{\prime}\left(y_{0}, z_{0}\right), \ldots,\left(y_{n+1}, z_{n+1}\right)$ by:

$$
\begin{array}{lll}
y_{0}=@ \$ y_{1} & y_{i}=a_{i 1} \$ a_{i 2} \$ \cdots a_{i m_{i}} \$ & y_{n+1}=\# \\
z_{0}=@ z_{1} & z_{i}=\$ b_{i 1} \$ b_{i 2} \cdots \$ b_{i r_{i}} & z_{n+1}=\$ \#
\end{array}
$$

for $1 \leq i \leq n$. The letters @, \$ and \# are fresh.
Every PCP X^{\prime} solution must start with $\left(y_{0}, z_{0}\right)$:

$$
y_{0} y_{j} \cdots y_{k} y_{n+1}=z_{0} z_{j} \cdots z_{k} z_{n+1}
$$

Solution exists $\Longleftrightarrow w_{1} w_{j} \cdots w_{k}=v_{1} v_{j} \cdots v_{k}$ is a solution of X.
As the MPCP is undecidable, so must be the PCP.

Example

Consider the following instance of the MPCP:

$$
\begin{aligned}
w_{1} & =11 & w_{2} & =1 \\
v_{1} & =1 & v_{2} & =11
\end{aligned}
$$

It reduces to the following PCP problem:

$$
\begin{array}{llll}
y_{0}=@ \$ 1 \$ 1 \$ & y_{1}=1 \$ 1 \$ & y_{2}=1 \$ & y_{3}=\# \\
z_{0}=@ \$ 1 & z_{1}=\$ 1 & z_{2}=\$ 1 \$ 1 & z_{3}=\$ \#
\end{array}
$$

Example solution MPCP:

$$
w_{1} w_{2}=111=v_{1} v_{2}
$$

Corresponding solution PCP:

$$
y_{0} y_{2} y_{3}=@ \$ 1 \$ 1 \$ 1 \$ \#=z_{0} z_{2} z_{3}
$$

In general: the original MPCP instance has a solution
\Longleftrightarrow the resulting PCP instance has a solution

Undecidable Properties of Context-Free Languages

Undecidable Properties of Context-Free Languages

Undecidable properties of context-free languages:

- empty intersection
- ambiguity
- palindromes
- equality

Empty Intersection of Context-Free Languages

Theorem

The question $L_{1} \cap L_{2}=\varnothing$? for context-free languages L_{1}, L_{2} is undecidable.

Proof.

We reduce the PCP to the above problem.
Given a PCP instance $X:\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)$.
We define two context-free grammars G_{1} and G_{2} :

$$
\begin{aligned}
& S_{1} \rightarrow w_{i} S_{1}\langle i\rangle \mid w_{i} \#\langle i\rangle \\
& S_{2} \rightarrow v_{i} S_{2}\langle i\rangle \mid v_{i} \#\langle i\rangle
\end{aligned}
$$

for $1 \leq i \leq n$. Here \#, \langle and \rangle are fresh symbols. Then

$$
\begin{aligned}
& L\left(G_{1}\right)=\left\{w_{j} \cdots w_{k} \#\langle k\rangle \cdots\langle j\rangle \mid 1 \leq j, \ldots, k \leq n\right\} \\
& L\left(G_{2}\right)=\left\{v_{\ell} \cdots v_{m} \#\langle m\rangle \cdots\langle\ell\rangle \mid 1 \leq \ell, \ldots, m \leq n\right\}
\end{aligned}
$$

$L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing \Longleftrightarrow$ the PCP X has no solution.

Ambiguity of Context-Free Grammars

Theorem

Ambiguity of context-free grammars is undecidable.

Proof.

We reduce the PCP to the above problem.
Given a PCP instance X : $\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)$.
We define a context-free grammar G :

$$
\begin{array}{ll}
S \rightarrow S_{1} \mid S_{2} & S_{1} \rightarrow w_{i} S_{1}\langle i\rangle \mid w_{i} \#\langle i\rangle \\
& S_{2} \rightarrow v_{i} S_{2}\langle i\rangle \mid v_{i} \#\langle i\rangle
\end{array}
$$

for $1 \leq i \leq n$. Here \#, 〈 and 〉 are fresh symbols.
Then G is ambiguous \Longleftrightarrow the PCP X has a solution.

Palindromes in Context-Free Languages

Theorem

It is undecidable whether a context-free languages contains a palindrome (a word $w=w^{R}$).

Proof.

We reduce the PCP to the above problem.
Given a PCP instance $X:\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)$.
We define a context-free grammar G :

$$
S \rightarrow w_{i} S v_{i}^{R} \mid w_{i} \# v_{i}^{R}
$$

for $1 \leq i \leq n$. Here \# is a fresh symbol.
$L(G)$ contains a palindrome $\Longleftrightarrow P C P X$ has a solution.

Equality of Context-Free Languages

Theorem

The question $L=\Sigma^{*}$? (and hence $L_{1}=L_{2}$?) for context-free languages $L\left(L_{1}, L_{2}\right)$ is undecidable.

Proof

Given a PCP $X:\left(w_{1}, v_{1}\right), \ldots,\left(w_{n}, v_{n}\right)$. Define G_{1} and G_{2} :

$$
\begin{aligned}
& S_{1} \rightarrow w_{i} S_{1}\langle i\rangle \mid w_{i} \#\langle i\rangle \\
& S_{2} \rightarrow v_{i} S_{2}\langle i\rangle \mid v_{i} \#\langle i\rangle
\end{aligned}
$$

as before. Then

$$
\begin{aligned}
\text { PCP } X \text { has no solution } & \Longleftrightarrow L\left(G_{1}\right) \cap L\left(G_{2}\right)=\varnothing \\
& \Longleftrightarrow \overline{L\left(G_{1}\right) \cap L\left(G_{2}\right)}=\bar{\varnothing} \\
& \Longleftrightarrow \overline{L\left(G_{1}\right)} \cup \overline{L\left(G_{2}\right)}=\Sigma^{*}
\end{aligned}
$$

It suffices to show that $\overline{\overline{\left(G_{1}\right)}} \cup \overline{L\left(G_{2}\right)}$ is context-free.
It suffices that $\overline{L\left(G_{1}\right)}$ is context-free ($\overline{L\left(G_{2}\right)}$ is analogous).

Equality of Context-Free Languages (2)

Proof continued

$$
S_{1} \rightarrow w_{i} S_{1}\langle i\rangle \mid w_{i} \#\langle i\rangle
$$

The words in $L\left(G_{1}\right)$ are of the form
$w_{j} \cdots w_{k} \#\langle k\rangle \cdots\langle j\rangle \quad$ for non-empty indices $1 \leq j, \ldots, k \leq n$
All these words are of the shape

$$
L_{S}=\Sigma^{*} \cdot\{\#\} \cdot\{\langle 1\rangle, \ldots,\langle n\rangle\}^{+} .
$$

We have $L\left(G_{1}\right) \subseteq L_{S}$, so

$$
\overline{L\left(G_{1}\right)}=\Sigma^{*} \backslash L\left(G_{1}\right)=\left(L_{S} \cup \overline{L_{S}}\right) \backslash L\left(G_{1}\right)=\left(L_{S} \backslash L\left(G_{1}\right)\right) \cup \overline{L_{S}}
$$

As L_{S} is regular, also $\overline{L_{S}}$ is regular (and context-free).
So it suffices to show that $L_{S} \backslash L\left(G_{1}\right)$ is context-free.
The words in $L_{S} \backslash L\left(G_{1}\right)$ are of the form:

$$
L_{s} \backslash L\left(G_{1}\right)=\left\{w \#\langle k\rangle \cdots\langle j\rangle \mid w \neq w_{j} \cdots w_{k}\right\}
$$

We distinguish three cases...

Equality of Context-Free Languages (3)

Proof continued

The words in $L_{S} \backslash L\left(G_{1}\right)$ are of the form:

$$
L_{S} \backslash L\left(G_{1}\right)=\left\{w \#\langle k\rangle \cdots\langle j\rangle \mid w \neq w_{j} \cdots w_{k}\right\}
$$

We distinguish three cases:

$$
L_{S} \backslash L\left(G_{1}\right)=L_{\text {smaller }} \cup L_{\text {larger }} \cup L_{\text {equal }}
$$

where

$$
\begin{aligned}
L_{\text {smaller }} & =\left\{w \#\langle k\rangle \cdots\langle j\rangle| | w\left|<\left|w_{j} \cdots w_{k}\right|\right\}\right. \\
L_{\text {larger }} & =\left\{w \#\langle k\rangle \cdots\langle j\rangle| | w\left|>\left|w_{j} \cdots w_{k}\right|\right\}\right. \\
L_{\text {equal }} & =\left\{w \#\langle k\rangle \cdots\langle j\rangle| | w\left|=\left|w_{j} \cdots w_{k}\right| \& w \neq w_{j} \ldots w_{k}\right\}\right.
\end{aligned}
$$

Each of these languages is context-free, thus $L_{s} \backslash L\left(G_{1}\right)$ is.

Exercise

Give context-free grammars for $L_{\text {smaller }}, L_{\text {larger }}$ and $L_{\text {equal }}$.

Semidecidability

Semidecidability

Recall that a decision $P \subseteq \Sigma^{*}$ is called

- decidable if the P is recursive,
- semidecidable if the P is recursively enumerable.

Examples of (undecidable but) semidecidable problems:

- halting problem,
- Post correspondence problem,
- non-empty intersection of context-free languages,
- ambiguity of context-free grammars.

There exist algorithms for these problems that always halt if the answer is yes, but may or may not halt if the answer is no.

More Undecidable Problems

Validity of a formula ϕ in predicate logic is undecidable.

In 1900 David Hilbert (1862-1941) formulated 23 scientific problems. Among them the following:

Diophantine equations consist of polynomials with one or more variables and coefficients in \mathbb{Z}. For example:

$$
\begin{aligned}
3 x^{2} y-7 y^{2} z^{3}-18 & =0 \\
-7 y^{2}+8 z^{3} & =0
\end{aligned}
$$

Hilbert's 10th problem: Give an algorithm to decide whether a system of Diophantine equations has a solution in \mathbb{Z}.

In 1970 Yuri Matiyasevich proved that this is undecidable.

