Automata Theory :: Undecidability

Jörg Endrullis

Vrije Universiteit Amsterdam

A decision problem P is a language $P \subseteq \Sigma^*$.

The problem P is called

- **decidable** if the *P* is recursive, otherwise **undeciable**,
- **semidecidable** if the *P* is recursively enumerable.

A decision problem P is a language $P \subseteq \Sigma^*$.

The problem P is called

- **decidable** if the *P* is recursive, otherwise **undeciable**,
- **semidecidable** if the *P* is recursively enumerable.

Decidable problem:

- algorithm that always halts
- always answers yes or no

A decision problem P is a language $P \subseteq \Sigma^*$.

The problem P is called

- decidable if the P is recursive, otherwise undeciable,
- **semidecidable** if the *P* is recursively enumerable.

Decidable problem:

- algorithm that always halts
- always answers yes or no

Semidecidable problem:

- algorithm halts (eventually) it the answer is yes ($w \in P$),
- may or may not halt if the answer is no $(w \notin P)$.

(Problem: one cannot know how long to wait for an answer.)

A decision problem P is decidable if

- P is semidecidable, and
- \overline{P} is semidecidable.

A decision problem *P* is decidable if

- P is semidecidable, and
- \overline{P} is semidecidable.

The following question is undecidable, but semidecidable:

Halting problem

Does TM M reach a halting state for input w? (Input: M and w.)

A decision problem *P* is decidable if

- P is semidecidable, and
- \overline{P} is semidecidable.

The following question is undecidable, but semidecidable:

Halting problem

Does TM *M* reach a halting state for input *w*? (Input: *M* and *w*.)

(Semidecidable: execute *M* on *w* and wait.)

A decision problem *P* is decidable if

- P is semidecidable, and
- \overline{P} is semidecidable.

The following question is undecidable, but semidecidable:

Halting problem

Does TM *M* reach a halting state for input *w*? (Input: *M* and *w*.)

(Semidecidable: execute M on w and wait.)

The following question not decidable and not semidecidable:

Universal halting problem

Does TM M reach a halting state on all $w \in \Sigma^*$? (Input: M.)

(The complement is also not semidecidable.)

The Halting Problem (1936)

The halting problem is: given

- a deterministic Turing machine M and
- a word *x*,

does M reach a halting state when started with input x?

The Halting Problem (1936)

The halting problem is: given

- a deterministic Turing machine M and
- a word x,

does M reach a halting state when started with input x?

The halting problem can be viewed as a language H $H = \{ (M, x) \mid M \text{ reaches a halting state on input } x \}$

M is an encoding of a deterministic Turing machine as a word.

The Halting Problem (1936)

The halting problem is: given

- a deterministic Turing machine M and
- a word x.

does M reach a halting state when started with input x?

The halting problem can be viewed as a language H

$$H = \{ (M, x) \mid M \text{ reaches a halting state on input } x \}$$

 $\it M$ is an encoding of a deterministic Turing machine as a word.

Theorem

The halting problem H is undecidable.

(The language *H* is not recursive.)

The Halting Problem is Undecidable - Proof 1

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Then every recursively enumerable language was recursive!

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Then every recursively enumerable language was recursive!

Let M be a deterministic Turing machine and x a word.

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Then every recursively enumerable language was recursive!

Let M be a deterministic Turing machine and x a word.

We can decide $x \in L(M)$ as follows:

- If according to \mathcal{H} , M does not halt on x, then $x \notin L(M)$.
- If according to \mathcal{H} , M halts on x, then execute M on x to see whether $x \in L(M)$.

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Then every recursively enumerable language was recursive!

Let *M* be a deterministic Turing machine and *x* a word.

We can decide $x \in L(M)$ as follows:

- If according to \mathcal{H} , M does not halt on x, then $x \notin L(M)$.
- If according to \mathcal{H} , M halts on x, then execute M on x to see whether $x \in L(M)$.

The algorithm always terminates, so L(M) is recursive.

Proof.

Assume the halting problem was decidable. Then there is a Turing machine \mathcal{H} that, given (M, x) decides if M halts on x.

Then every recursively enumerable language was recursive!

Let M be a deterministic Turing machine and x a word.

We can decide $x \in L(M)$ as follows:

- If according to \mathcal{H} , M does not halt on x, then $x \notin L(M)$.
- If according to \mathcal{H} , M halts on x, then execute M on x to see whether $x \in L(M)$.

The algorithm always terminates, so L(M) is recursive.

Contradiction: not every recursively enumerable language is recursive.

The Halting Problem is Undecidable - Proof 2

Assume there would be a program T with the behaviour:

- input: a program *M*
- output: yes if M terminates on input M, no otherwise

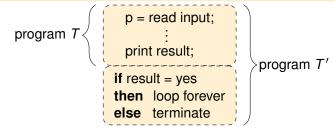
Assume there would be a program T with the behaviour:

- input: a program M
- output: yes if M terminates on input M, no otherwise

```
program T \left\{ \begin{array}{c} p = \text{read input;} \\ \vdots \\ print result; \end{array} \right\}
```

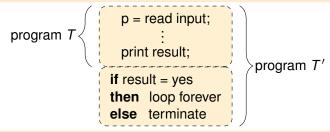
Assume there would be a program *T* with the behaviour:

- input: a program *M*
- output: yes if M terminates on input M, no otherwise



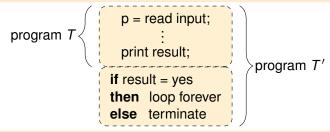
Assume there would be a program *T* with the behaviour:

- input: a program M
- output: yes if M terminates on input M, no otherwise



Assume there would be a program T with the behaviour:

- input: a program M
- output: yes if M terminates on input M, no otherwise

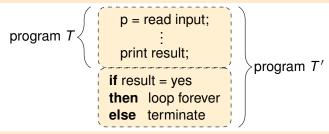


What happens if we run T' with input T'?

■ initial part *T* decides whether *T'* terminates on input *T'*

Assume there would be a program *T* with the behaviour:

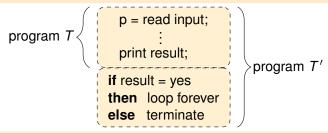
- input: a program M
- output: yes if M terminates on input M, no otherwise



- initial part *T* decides whether *T'* terminates on input *T'*
- if the result is yes, then T' runs forever

Assume there would be a program T with the behaviour:

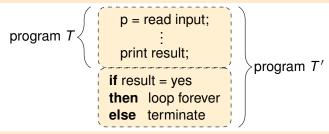
- input: a program M
- output: yes if M terminates on input M, no otherwise



- initial part *T* decides whether *T'* terminates on input *T'*
- if the result is yes, then T' runs forever Contradiction

Assume there would be a program T with the behaviour:

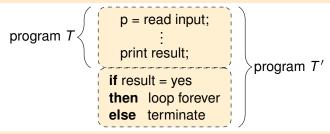
- input: a program M
- output: yes if M terminates on input M, no otherwise



- initial part *T* decides whether *T'* terminates on input *T'*
- if the result is yes, then T' runs forever Contradiction
- if the result is no, then T' terminates

Assume there would be a program T with the behaviour:

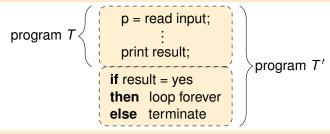
- input: a program M
- output: yes if M terminates on input M, no otherwise



- initial part *T* decides whether *T'* terminates on input *T'*
- if the result is yes, then T' runs forever Contradiction
- if the result is no, then T' terminates Contradiction

Assume there would be a program T with the behaviour:

- input: a program M
- output: yes if M terminates on input M, no otherwise



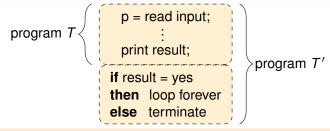
What happens if we run T' with input T'?

- initial part *T* decides whether *T'* terminates on input *T'*
- if the result is yes, then T' runs forever Contradiction
- if the result is no, then T' terminates Contradiction

Thus T cannot exist!

Assume there would be a program T with the behaviour:

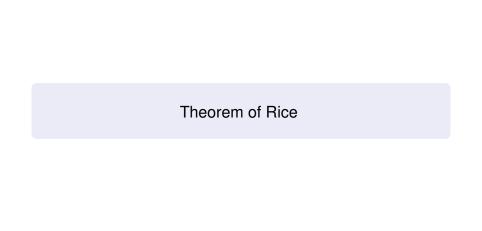
- input: a program *M*
- output: yes if M terminates on input M, no otherwise



What happens if we run T' with input T'?

- initial part *T* decides whether *T'* terminates on input *T'*
- if the result is yes, then T' runs forever Contradiction
- if the result is no, then T' terminates Contradiction

Thus *T* cannot exist! The halting problem is undecidable!



A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property *P* of recursively enumerable languages is undecidable.

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property *P* of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

Let *L* be recursively enumerable.

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

Let L be recursively enumerable. We decide $x \in L!$

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

Let *L* be recursively enumerable. We decide $x \in L!$

Construct a TM M_x such that M_x accepts y if $x \in L$ and $y \in L_0$.

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

Let L be recursively enumerable. We decide $x \in L!$

Construct a TM M_x such that M_x accepts y if $x \in L$ and $y \in L_0$.

$$L(M_x) = \varnothing$$
 if $x \notin L$ $L(M_x) = L_0$ if $x \in L$

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

Let *L* be recursively enumerable. We decide $x \in L!$

Construct a TM M_x such that M_x accepts y if $x \in L$ and $y \in L_0$.

$$L(M_x) = \varnothing$$
 if $x \notin L$ $L(M_x) = L_0$ if $x \in L$

Then $x \notin L \iff P(L(M_x))$.

A property of a class K is **trivial** if it holds for **all** or **no** $k \in K$.

Theorem of Rice

Every **non-trivial** property P of recursively enumerable languages is undecidable.

Proof.

Assume that $P(\emptyset)$ (if not, take $\neg P$).

Let L_0 be a recursively enumerable language with $\neg P(L_0)$.

Let L be recursively enumerable. We decide $x \in L!$

Construct a TM M_x such that M_x accepts y if $x \in L$ and $y \in L_0$.

$$L(M_x) = \varnothing$$
 if $x \notin L$ $L(M_x) = L_0$ if $x \in L$

Then $x \notin L \iff P(L(M_x))$.

Contradiction: decidability of $P \implies L$ recursive.

Theorem of Rice: Example

For recursively enumerable languages L, the following questions are undecidable:

- 1. Is $a \in L$?
- 2. Is *L* finite?

Post Correspondence Problem (1946)

Post Correspondence Problem (PCP)

Given *n* pairs of words:

$$(w_1, v_1), \ldots, (w_n, v_n)$$

Are there indices i_1, i_2, \dots, i_k $(k \ge 1)$ s.t.

$$w_{i_1} w_{i_2} \cdots w_{i_k} = v_{i_1} v_{i_2} \cdots v_{i_k}$$
?

Emil Post (1897-1954)

Post Correspondence Problem (1946)

Post Correspondence Problem (PCP)

Given *n* pairs of words:

$$(w_1, v_1), \ldots, (w_n, v_n)$$

Are there indices i_1, i_2, \ldots, i_k $(k \ge 1)$ s.t.

$$w_{i_1} w_{i_2} \cdots w_{i_k} = v_{i_1} v_{i_2} \cdots v_{i_k}$$
?

Emil Post (1897-1954)

Exercise

Find a solution for

$$(w_1, v_1) = (01, 100)$$

 $(w_2, v_2) = (1, 011)$
 $(w_3, v_3) = (110, 1)$

We will show that the PCP is undecidable.

We will show that the PCP is undecidable.

We first prove that the **modified PCP (MPCP)** is undecidable.

We will show that the PCP is undecidable.

We first prove that the **modified PCP (MPCP)** is undecidable.

Modified PCP (MPCP)

Given *n* pairs of words:

$$(w_1, v_1), \ldots, (w_n, v_n)$$

Are there indices i_1, i_2, \dots, i_k $(k \ge 1)$ such that

$$\mathbf{w_1} \, \mathbf{w_{i_1}} \, \mathbf{w_{i_2}} \cdots \mathbf{w_{i_k}} = \mathbf{v_1} \, \mathbf{v_{i_1}} \, \mathbf{v_{i_2}} \cdots \mathbf{v_{i_k}} ?$$

Theorem

The modified PCP is undecidable.

Theorem

The modified PCP is undecidable.

Proof.

G = (V, T, S, P) any unrestricted grammar. Decide $w \in L(G)$?

Theorem

The modified PCP is undecidable.

Proof.

G = (V, T, S, P) any unrestricted grammar. Decide $w \in L(G)$?

We define (where *F* and *E* are fresh):

This MPCP has a solution $\iff w \in L(G)$.

Theorem

The modified PCP is undecidable.

Proof.

G = (V, T, S, P) any unrestricted grammar. Decide $w \in L(G)$?

We define (where *F* and *E* are fresh):

$$\begin{array}{llll} w_1 &=& F & & v_1 &=& FS \Rightarrow \\ w_2 &=& \Rightarrow wE & v_2 &=& E \\ \vdots & x & \vdots & y & & (x \rightarrow y \in P) \\ & a & & a & & (a \in T) \\ & A & & A & & (A \in V) \\ & \Rightarrow & & \Rightarrow & & \end{array}$$

This MPCP has a solution $\iff w \in L(G)$.

Contradiction: If the MPCP was decidable, then $w \in L(G)$ was decidable for unrestricted grammars G!

$$S o AA$$
 $A o aB \mid Bb$ $BB o aa$

This grammar with w = aaab translates to the following MPCP:

 $S \rightarrow AA$ $A \rightarrow aB \mid Bb$ $BB \rightarrow aa$

This grammar with w = aaab translates to the following MPCP:

i	W _i	Vi
1	F	FS ⇒
2	⇒ aaab E	Е
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	FS ⇒
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

, the lenetting		
Wi	Vi	
\Rightarrow	\Rightarrow	
а	а	
b	b	
Α	Α	
В	В	
S	S	
	⇒abAB	

Example derivation: $S \Rightarrow AA \Rightarrow aBA \Rightarrow aBBb \Rightarrow aaab$.

 W_i :

 V_i :

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	W _i	Vi
1	F	$\textit{FS} \Rightarrow$
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

o the lenewing		
i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$W_i: \frac{1}{F}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	FS ⇒
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

Wi	Vi
\Rightarrow	\Rightarrow
а	а
b	b
Α	Α
В	В
S	S
	⇒abAB

$$W_i: \frac{1}{F} \frac{3}{S}$$

 $V_i: \frac{FS}{S} \Rightarrow AA$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	$\textit{FS} \Rightarrow$
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

o tile lollowing		
i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$w_i: \frac{1}{F} \frac{3}{S} \frac{7}{\Rightarrow}$$
 $v_i: \frac{FS}{1} \Rightarrow \underbrace{AA}_{3} \frac{\Rightarrow}{7}$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	W _i	Vi
1	F	$\textit{FS} \Rightarrow$
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$w_{j}: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A}$$

$$v_{j}: \frac{FS}{A} \xrightarrow{AA} \xrightarrow{3} \underbrace{aB}$$

$$v_i: \quad FS \Rightarrow AA \Rightarrow aB$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	$\mathit{FS} \Rightarrow$
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

o the lollowing			
i	Wi	Vi	
7	\Rightarrow	\Rightarrow	
8	а	а	
9	b	b	
10	Α	Α	
11	В	В	
12	S	S	

$$W_i: \frac{1}{F}\frac{3}{S}\frac{7}{\Rightarrow}\frac{4}{A}\frac{10}{A}$$

$$v_i: \xrightarrow{FS} \xrightarrow{AA} \xrightarrow{7} \xrightarrow{aB} \xrightarrow{A}_{10}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	FS ⇒
2	⇒ aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$W_i: \stackrel{1}{F} \stackrel{3}{S} \stackrel{7}{\Rightarrow} \stackrel{4}{A} \stackrel{10}{A} \stackrel{7}{\Rightarrow}$$

$$v_i: \frac{FS}{\overset{1}{\longrightarrow}} \underbrace{AA}_{\overset{3}{\longrightarrow}} \underbrace{aB}_{\overset{4}{\longrightarrow}} \underbrace{A}_{\overset{10}{\longrightarrow}}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	FS ⇒
2	⇒ aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

Wi	Vi
\Rightarrow	\Rightarrow
а	а
b	b
Α	Α
В	В
S	S
	⇒ a b A B

$$W_{i}: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{a}$$

$$v_{i}: \frac{FS}{1} \xrightarrow{1} \frac{AA}{3} \xrightarrow{7} \frac{aB}{4} \xrightarrow{10} \frac{A}{7} \xrightarrow{8} \frac{A}{8}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	W _i	Vi
1	F	FS ⇒
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

o tho lonowing		
i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$W_{i}: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{A} \frac{11}{B}$$

$$V_{i}: \frac{FS}{1} \xrightarrow{3} \frac{AA}{3} \xrightarrow{7} \frac{aB}{4} \xrightarrow{10} \frac{A}{7} \xrightarrow{8} \frac{B}{8} \frac{11}{11}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	W _i	Vi
1	F	FS ⇒
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

•	o			
i		Wi	Vi	
7		\Rightarrow	\Rightarrow	
8		а	а	
9		b	b	
10)	Α	Α	
1	1	В	В	
12	2	S	S	

$$W_i: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{A} \frac{11}{B} \frac{5}{A}$$

$$v_i: \xrightarrow{FS} \xrightarrow{AA} \xrightarrow{3} \xrightarrow{7} \xrightarrow{aB} \xrightarrow{A} \xrightarrow{10} \xrightarrow{7} \xrightarrow{8} \xrightarrow{11} \xrightarrow{5}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	$\textit{FS} \Rightarrow$
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$w_i: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{a} \frac{11}{B} \frac{5}{A} \xrightarrow{7} \Rightarrow$$

$$v_i: FS \xrightarrow{AA} \xrightarrow{3} \xrightarrow{AB} \xrightarrow{A} \xrightarrow{10} \xrightarrow{7} \xrightarrow{8} \xrightarrow{11} \xrightarrow{5} \xrightarrow{7}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	FS ⇒
2	⇒ aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$W_{i}: \frac{1}{F} \xrightarrow{3} \xrightarrow{7} \xrightarrow{4} \xrightarrow{10} \xrightarrow{7} \xrightarrow{8} \xrightarrow{11} \xrightarrow{5} \xrightarrow{7} \xrightarrow{8} \xrightarrow{a}$$

$$v_i: \xrightarrow{FS} \xrightarrow{AA} \xrightarrow{3} \xrightarrow{7} \xrightarrow{aB} \xrightarrow{A} \xrightarrow{7} \xrightarrow{aB} \xrightarrow{Bb} \xrightarrow{7} \xrightarrow{8}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	$\textit{FS} \Rightarrow$
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

			٥
i		Wi	Vi
7		\Rightarrow	\Rightarrow
8		а	а
9		b	b
10)	Α	Α
1-	1	В	В
12	2	S	S

Example derivation: $S \Rightarrow AA \Rightarrow aBA \Rightarrow aBBb \Rightarrow aaab$.

$$W_{j}: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{A} \frac{11}{B} \frac{5}{A} \xrightarrow{7} \frac{8}{B} \frac{6}{B}$$

$$FS \rightarrow AA \rightarrow 3BA \rightarrow 3BB$$

 $v_i: FS \Rightarrow AA \Rightarrow aBA \Rightarrow aBBb \Rightarrow aaa$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	Wi	Vi
1	F	$\textit{FS} \Rightarrow$
2	⇒ aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

Wi	Vi
\Rightarrow	\Rightarrow
а	а
b	b
Α	Α
В	В
S	S
	⇒ a b A B

$$w_{i}: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{a} \frac{811}{B} \frac{5}{A} \xrightarrow{7} \frac{8}{a} \frac{6}{B} \frac{9}{b}$$

$$v_{i}: \frac{F}{S} \xrightarrow{9} \underbrace{AA}_{3} \xrightarrow{7} \underbrace{AB}_{4} \xrightarrow{10}_{10} \xrightarrow{7} \underbrace{AB}_{8} \underbrace{Bb}_{11} \xrightarrow{5} \xrightarrow{7} \underbrace{aaab}_{8} \xrightarrow{6} \xrightarrow{9}$$

$$\mathcal{S}
ightarrow \mathcal{A} \mathcal{A}$$

S o AA $A o aB \mid Bb$ BB o aa

This grammar with w = aaab translates to the following MPCP:

i	W _i	Vi
1	F	FS ⇒
2	\Rightarrow aaab E	E
3	S	AA
4	Α	аВ
5	Α	Bb
6	BB	aa

		٥
i	Wi	Vi
7	\Rightarrow	\Rightarrow
8	а	а
9	b	b
10	Α	Α
11	В	В
12	S	S

$$W_{i}: \frac{1}{F} \frac{3}{S} \xrightarrow{7} \frac{4}{A} \frac{10}{A} \xrightarrow{7} \frac{8}{a} \frac{811}{B} \frac{5}{A} \xrightarrow{7} \frac{8}{a} \frac{6}{B} \frac{9}{B} \xrightarrow{2} \frac{2}{\Rightarrow aaabE}$$

$$V_{i}: \frac{FS}{1} \xrightarrow{3} \frac{AA}{3} \xrightarrow{7} \frac{3}{4} \frac{AB}{10} \xrightarrow{7} \frac{AB}{8} \frac{BB}{11} \xrightarrow{5} \frac{7}{7} \xrightarrow{8} \frac{aaabE}{6} \xrightarrow{9} \frac{2}{2}$$

Post Correspondence Problem

Theorem

The PCP is undecidable.

Post Correspondence Problem

Theorem

The PCP is undecidable.

Proof.

Given an MPCP X: $(w_1, v_1), \dots, (w_n, v_n)$ where $w_i = a_{i1} \cdots a_{im_i}$ and $v_i = b_{i1} \cdots b_{ir_i}$ (with $m_i + r_i > 0$)

Post Correspondence Problem

Theorem

The PCP is undecidable.

Proof.

Given an MPCP
$$X$$
: $(w_1, v_1), \dots, (w_n, v_n)$ where $w_i = a_{i1} \cdots a_{im_i}$ and $v_i = b_{i1} \cdots b_{ir_i}$ (with $m_i + r_i > 0$) We define PCP X' $(y_0, z_0), \dots, (y_{n+1}, z_{n+1})$ by: $y_0 = @\$y_1$ $y_i = a_{i1}\$a_{i2}\$\cdots a_{im_i}\$$ $y_{n+1} = \#$ $z_0 = @z_1$ $z_i = \$b_{i1}\$b_{i2}\cdots\$b_{ir_i}$ $z_{n+1} = \$\#$

for 1 < i < n. The letters @, \$ and # are fresh.

Post Correspondence Problem

Theorem

The PCP is undecidable.

Proof.

Given an MPCP
$$X: (w_1, v_1), \dots, (w_n, v_n)$$
 where

$$w_i = a_{i1} \cdots a_{im_i}$$
 and $v_i = b_{i1} \cdots b_{ir_i}$ (with $m_i + r_i > 0$)

We define PCP $X'(y_0, z_0), ..., (y_{n+1}, z_{n+1})$ by:

$$y_0 = @ y_1$$
 $y_i = a_{i1} a_{i2} \cdots a_{im_i}$ $y_{n+1} = #$
 $z_0 = @ z_1$ $z_i = b_{i1} b_{i2} \cdots b_{ir_i}$ $z_{n+1} = #$

for 1 < i < n. The letters @, \$ and # are fresh.

Every PCP X' solution must start with (y_0, z_0) :

$$y_0y_j\cdots y_ky_{n+1}=z_0z_j\cdots z_kz_{n+1}$$

Post Correspondence Problem

Theorem

The PCP is undecidable.

Proof.

Given an MPCP
$$X: (w_1, v_1), \dots, (w_n, v_n)$$
 where

$$w_i = a_{i1} \cdots a_{im_i}$$
 and $v_i = b_{i1} \cdots b_{ir_i}$ (with $m_i + r_i > 0$)

We define PCP $X'(y_0, z_0), ..., (y_{n+1}, z_{n+1})$ by:

$$y_0 = @$y_1$$
 $y_i = a_{i1}$a_{i2}$\cdots a_{im_i}$$ $y_{n+1} = #$

$$z_0 = @z_1$$
 $z_i = b_{i1}b_{i2}\cdots b_{ir_i}$ $z_{n+1} = \#$

for $1 \le i \le n$. The letters @, \$ and # are fresh.

Every PCP X' solution must start with (y_0, z_0) :

$$y_0y_1\cdots y_ky_{n+1}=z_0z_1\cdots z_kz_{n+1}$$

Solution exists \iff $\mathbf{w_1} \mathbf{w_j} \cdots \mathbf{w_k} = \mathbf{v_1} \mathbf{v_j} \cdots \mathbf{v_k}$ is a solution of X.

Post Correspondence Problem

Theorem

The PCP is undecidable.

Proof.

Given an MPCP
$$X: (w_1, v_1), \dots, (w_n, v_n)$$
 where

$$w_i = a_{i1} \cdots a_{im_i}$$
 and $v_i = b_{i1} \cdots b_{ir_i}$ (with $m_i + r_i > 0$)

We define PCP $X'(y_0, z_0), ..., (y_{n+1}, z_{n+1})$ by:

$$y_0 = @ y_1$$
 $y_i = a_{i1} a_{i2} \cdots a_{im_i}$ $y_{n+1} = #$
 $z_0 = @ z_1$ $z_i = b_{i1} b_{i2} \cdots b_{ir_i}$ $z_{n+1} = b_{n+1}$

for $1 \le i \le n$. The letters @, \$ and # are fresh.

Every PCP X' solution must start with (y_0, z_0) :

$$y_0y_1\cdots y_ky_{n+1}=z_0z_1\cdots z_kz_{n+1}$$

Solution exists \iff $\mathbf{w_1} \mathbf{w_i} \cdots \mathbf{w_k} = \mathbf{v_1} \mathbf{v_i} \cdots \mathbf{v_k}$ is a solution of X.

As the MPCP is undecidable, so must be the PCP.

Example

Consider the following instance of the MPCP:

$$w_1 = 11$$
 $w_2 = 1$ $v_1 = 1$ $v_2 = 11$

It reduces to the following PCP problem:

$$y_0 = @\$1\$1\$$$
 $y_1 = 1\$1\$$ $y_2 = 1\$$ $y_3 = \#$ $z_0 = @\$1$ $z_1 = \$1$ $z_2 = \$1\1 $z_3 = \$\#$

Example

Consider the following instance of the MPCP:

$$w_1 = 11$$
 $w_2 = 1$ $v_1 = 1$ $v_2 = 11$

It reduces to the following PCP problem:

$$y_0 = @\$1\$1\$$$
 $y_1 = 1\$1\$$ $y_2 = 1\$$ $y_3 = \#$ $z_0 = @\$1$ $z_1 = \$1$ $z_2 = \$1\1 $z_3 = \$\#$

Example solution MPCP:

$$w_1 w_2 = 111 = v_1 v_2$$

Corresponding solution PCP:

$$y_0y_2y_3 = @$1$1$1$# = z_0z_2z_3$$

Example

Consider the following instance of the MPCP:

$$w_1 = 11$$
 $w_2 = 1$ $v_1 = 1$ $v_2 = 11$

It reduces to the following PCP problem:

$$y_0 = @\$1\$1\$$$
 $y_1 = 1\$1\$$ $y_2 = 1\$$ $y_3 = \#$ $z_0 = @\$1$ $z_1 = \$1$ $z_2 = \$1\1 $z_3 = \$\#$

Example solution MPCP:

$$w_1 w_2 = 111 = v_1 v_2$$

Corresponding solution PCP:

$$y_0y_2y_3 = @$1$1$1$# = $z_0z_2z_3$$$

In general: the original MPCP instance has a solution $\iff \text{the resulting PCP instance has a solution}$

Undecidable Properties of Context-Free Languages

Undecidable Properties of Context-Free Languages

Undecidable properties of context-free languages:

- empty intersection
- ambiguity
- palindromes
- equality
- ...

Theorem

The question $L_1 \cap L_2 = \emptyset$? for context-free languages L_1 , L_2 is undecidable.

Theorem

The question $L_1 \cap L_2 = \emptyset$? for context-free languages L_1 , L_2 is undecidable.

Proof.

We reduce the PCP to the above problem.

Theorem

The question $L_1 \cap L_2 = \emptyset$? for context-free languages L_1 , L_2 is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

Theorem

The question $L_1 \cap L_2 = \emptyset$? for context-free languages L_1 , L_2 is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

We define two context-free grammars G_1 and G_2 :

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

 $S_2 \rightarrow v_i S_2 \langle i \rangle \mid v_i \# \langle i \rangle$

for $1 \le i \le n$. Here #, \langle and \rangle are fresh symbols.

Theorem

The question $L_1 \cap L_2 = \emptyset$? for context-free languages L_1 , L_2 is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

We define two context-free grammars G_1 and G_2 :

$$\begin{array}{l} S_1 \rightarrow \textit{w}_i S_1 \langle \textit{i} \rangle \mid \textit{w}_i \# \langle \textit{i} \rangle \\ S_2 \rightarrow \textit{v}_i S_2 \langle \textit{i} \rangle \mid \textit{v}_i \# \langle \textit{i} \rangle \end{array}$$

for $1 \le i \le n$. Here #, \langle and \rangle are fresh symbols. Then

$$L(G_1) = \{ w_j \cdots w_k \# \langle k \rangle \cdots \langle j \rangle \mid 1 \leq j, \dots, k \leq n \}$$

$$L(G_2) = \{ v_\ell \cdots v_m \# \langle m \rangle \cdots \langle \ell \rangle \mid 1 \leq \ell, \dots, m \leq n \}$$

Theorem

The question $L_1 \cap L_2 = \emptyset$? for context-free languages L_1 , L_2 is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

We define two context-free grammars G_1 and G_2 :

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

 $S_2 \rightarrow v_i S_2 \langle i \rangle \mid v_i \# \langle i \rangle$

for $1 \le i \le n$. Here #, \langle and \rangle are fresh symbols. Then

$$L(G_1) = \{w_j \cdots w_k \# \langle k \rangle \cdots \langle j \rangle \mid 1 \leq j, \dots, k \leq n\}$$

$$L(G_2) = \{v_\ell \cdots v_m \# \langle m \rangle \cdots \langle \ell \rangle \mid 1 \leq \ell, \dots, m \leq n\}$$

 $L(G_1) \cap L(G_2) = \emptyset \iff$ the PCP X has no solution.

Theorem

Ambiguity of context-free grammars is undecidable.

Theorem

Ambiguity of context-free grammars is undecidable.

Proof.

We reduce the PCP to the above problem.

Theorem

Ambiguity of context-free grammars is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

Theorem

Ambiguity of context-free grammars is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

We define a context-free grammar *G*:

$$egin{aligned} S
ightarrow S_1 \mid S_2 & S_1
ightarrow w_i S_1 \langle i
angle \mid w_i \# \langle i
angle \ S_2
ightarrow v_i S_2 \langle i
angle \mid v_i \# \langle i
angle \end{aligned}$$

for $1 \le i \le n$. Here #, \langle and \rangle are fresh symbols.

Theorem

Ambiguity of context-free grammars is undecidable.

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

We define a context-free grammar *G*:

$$egin{aligned} S
ightarrow S_1 \mid S_2 & S_1
ightarrow w_i S_1 \langle i
angle \mid w_i \# \langle i
angle \ S_2
ightarrow v_i S_2 \langle i
angle \mid v_i \# \langle i
angle \end{aligned}$$

for $1 \le i \le n$. Here #, \langle and \rangle are fresh symbols.

Then G is ambiguous \iff the PCP X has a solution.

Theorem

It is undecidable whether a context-free languages contains a palindrome (a word $w = w^R$).

Theorem

It is undecidable whether a context-free languages contains a palindrome (a word $w = w^R$).

Proof.

We reduce the PCP to the above problem.

Theorem

It is undecidable whether a context-free languages contains a palindrome (a word $w = w^R$).

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \ldots, (w_n, v_n)$.

Theorem

It is undecidable whether a context-free languages contains a palindrome (a word $w = w^R$).

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

We define a context-free grammar G:

$$S \rightarrow w_i S v_i^R \mid w_i \# v_i^R$$

for $1 \le i \le n$. Here # is a fresh symbol.

Theorem

It is undecidable whether a context-free languages contains a palindrome (a word $w = w^R$).

Proof.

We reduce the PCP to the above problem.

Given a PCP instance $X: (w_1, v_1), \dots, (w_n, v_n)$.

We define a context-free grammar G:

$$S \rightarrow w_i S v_i^R \mid w_i \# v_i^R$$

for $1 \le i \le n$. Here # is a fresh symbol.

L(G) contains a palindrome \iff PCP X has a solution.

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP $X: (w_1, v_1), ..., (w_n, v_n)$.

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP $X: (w_1, v_1), \dots, (w_n, v_n)$. Define G_1 and G_2 :

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

$$S_2 \rightarrow v_i S_2 \langle i \rangle \mid v_i \# \langle i \rangle$$

as before.

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP $X: (w_1, v_1), \dots, (w_n, v_n)$. Define G_1 and G_2 :

$$\begin{array}{l} S_1 \rightarrow \textit{w}_i S_1 \langle \textit{i} \rangle \mid \textit{w}_i \# \langle \textit{i} \rangle \\ S_2 \rightarrow \textit{v}_i S_2 \langle \textit{i} \rangle \mid \textit{v}_i \# \langle \textit{i} \rangle \end{array}$$

as before. Then

PCP *X* has no solution $\iff L(G_1) \cap L(G_2) = \emptyset$

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP X: $(w_1, v_1), \dots, (w_n, v_n)$. Define G_1 and G_2 :

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

 $S_2 \rightarrow v_i S_2 \langle i \rangle \mid v_i \# \langle i \rangle$

as before. Then

PCP
$$X$$
 has no solution $\iff L(G_1) \cap L(G_2) = \emptyset$
 $\iff \overline{L(G_1) \cap L(G_2)} = \overline{\emptyset}$

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP $X: (w_1, v_1), \dots, (w_n, v_n)$. Define G_1 and G_2 :

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

 $S_2 \rightarrow v_i S_2 \langle i \rangle \mid v_i \# \langle i \rangle$

as before. Then

PCP
$$X$$
 has no solution $\iff L(G_1) \cap L(G_2) = \emptyset$

$$\iff \overline{L(G_1) \cap L(G_2)} = \overline{\emptyset}$$

$$\iff \overline{L(G_1)} \cup \overline{L(G_2)} = \Sigma^*$$

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP $X: (w_1, v_1), \dots, (w_n, v_n)$. Define G_1 and G_2 :

$$\begin{array}{l} S_1 \rightarrow \textit{w}_i S_1 \langle \textit{i} \rangle \mid \textit{w}_i \# \langle \textit{i} \rangle \\ S_2 \rightarrow \textit{v}_i S_2 \langle \textit{i} \rangle \mid \textit{v}_i \# \langle \textit{i} \rangle \end{array}$$

as before. Then

PCP
$$X$$
 has no solution $\iff L(G_1) \cap L(G_2) = \emptyset$

$$\iff \overline{L(G_1) \cap L(G_2)} = \overline{\emptyset}$$

$$\iff \overline{L(G_1)} \cup \overline{L(G_2)} = \Sigma^*$$

It suffices to show that $\overline{L(G_1)} \cup \overline{L(G_2)}$ is context-free.

Theorem

The question $L = \Sigma^*$? (and hence $L_1 = L_2$?) for context-free languages $L(L_1, L_2)$ is undecidable.

Proof

Given a PCP $X: (w_1, v_1), \dots, (w_n, v_n)$. Define G_1 and G_2 :

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

$$S_2 \rightarrow v_i S_2 \langle i \rangle \mid v_i \# \langle i \rangle$$

as before. Then

PCP
$$X$$
 has no solution $\iff L(G_1) \cap L(G_2) = \emptyset$
 $\iff \overline{L(G_1) \cap L(G_2)} = \overline{\emptyset}$
 $\iff \overline{L(G_1)} \cup \overline{L(G_2)} = \Sigma^*$

It suffices to show that $\overline{L(G_1)} \cup \overline{L(G_2)}$ is context-free.

It suffices that $\overline{L(G_1)}$ is context-free ($\overline{L(G_2)}$ is analogous).

Proof continued

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

The words in $L(G_1)$ are of the form

$$w_j \cdots w_k \ \# \ \langle k \rangle \cdots \langle j \rangle$$
 for non-empty indices $1 \leq j, \ldots, k \leq n$

All these words are of the shape

$$L_{\mathcal{S}} = \Sigma^* \cdot \{\#\} \cdot \{\langle 1 \rangle, \ldots, \langle n \rangle\}^+.$$

Proof continued

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

The words in $L(G_1)$ are of the form

$$w_j \cdots w_k \# \langle k \rangle \cdots \langle j \rangle$$
 for non-empty indices $1 \leq j, \ldots, k \leq n$

All these words are of the shape

$$L_{\mathcal{S}} = \Sigma^* \cdot \{\#\} \cdot \{\langle 1 \rangle, \ldots, \langle n \rangle\}^+.$$

We have $L(G_1) \subseteq L_S$, so

$$\overline{\textit{L}(\textit{G}_{1})} = \Sigma^{*} \setminus \textit{L}(\textit{G}_{1}) = (\textit{L}_{\textit{S}} \cup \overline{\textit{L}_{\textit{S}}}) \setminus \textit{L}(\textit{G}_{1}) = (\textit{L}_{\textit{S}} \setminus \textit{L}(\textit{G}_{1})) \cup \overline{\textit{L}_{\textit{S}}}$$

Proof continued

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

The words in $L(G_1)$ are of the form

$$w_j \cdots w_k \# \langle k \rangle \cdots \langle j \rangle$$
 for non-empty indices $1 \leq j, \ldots, k \leq n$

All these words are of the shape

$$L_{\mathcal{S}} = \Sigma^* \cdot \{\#\} \cdot \{\langle 1 \rangle, \ldots, \langle n \rangle\}^+.$$

We have $L(G_1) \subseteq L_S$, so

$$\overline{\textit{L}(\textit{G}_{1})} = \Sigma^{*} \setminus \textit{L}(\textit{G}_{1}) = (\textit{L}_{\textit{S}} \cup \overline{\textit{L}_{\textit{S}}}) \setminus \textit{L}(\textit{G}_{1}) = (\textit{L}_{\textit{S}} \setminus \textit{L}(\textit{G}_{1})) \cup \overline{\textit{L}_{\textit{S}}}$$

As L_S is regular, also $\overline{L_S}$ is regular (and context-free).

Proof continued

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

The words in $L(G_1)$ are of the form

$$w_j \cdots w_k \# \langle k \rangle \cdots \langle j \rangle$$
 for non-empty indices $1 \leq j, \ldots, k \leq n$

All these words are of the shape

$$L_{\mathcal{S}} = \Sigma^* \cdot \{\#\} \cdot \{\langle 1 \rangle, \ldots, \langle n \rangle\}^+.$$

We have $L(G_1) \subseteq L_S$, so

$$\overline{L(G_1)} = \Sigma^* \setminus L(G_1) = (L_S \cup \overline{L_S}) \setminus L(G_1) = (L_S \setminus L(G_1)) \cup \overline{L_S}$$

As L_S is regular, also $\overline{L_S}$ is regular (and context-free).

So it suffices to show that $L_S \setminus L(G_1)$ is context-free.

Proof continued

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

The words in $L(G_1)$ are of the form

$$w_j \cdots w_k \# \langle k \rangle \cdots \langle j \rangle$$
 for non-empty indices $1 \leq j, \ldots, k \leq n$

All these words are of the shape

$$L_{\mathcal{S}} = \Sigma^* \cdot \{\#\} \cdot \{\langle 1 \rangle, \ldots, \langle n \rangle\}^+.$$

We have $L(G_1) \subseteq L_S$, so

$$\overline{L(G_1)} = \Sigma^* \setminus L(G_1) = (L_S \cup \overline{L_S}) \setminus L(G_1) = (L_S \setminus L(G_1)) \cup \overline{L_S}$$

As L_S is regular, also $\overline{L_S}$ is regular (and context-free).

So it suffices to show that $L_S \setminus L(G_1)$ is context-free.

The words in $L_S \setminus L(G_1)$ are of the form:

$$L_S \setminus L(G_1) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_i \cdots w_k \}$$

Proof continued

$$S_1 \rightarrow w_i S_1 \langle i \rangle \mid w_i \# \langle i \rangle$$

The words in $L(G_1)$ are of the form

$$w_i \cdots w_k \# \langle k \rangle \cdots \langle j \rangle$$
 for non-empty indices $1 \leq j, \ldots, k \leq n$

All these words are of the shape

$$L_{\mathcal{S}} = \Sigma^* \cdot \{\#\} \cdot \{\langle 1 \rangle, \ldots, \langle n \rangle\}^+.$$

We have $L(G_1) \subseteq L_S$, so

$$\overline{\textit{L}(\textit{G}_{1})} = \Sigma^{*} \setminus \textit{L}(\textit{G}_{1}) = (\textit{L}_{\textit{S}} \cup \overline{\textit{L}_{\textit{S}}}) \setminus \textit{L}(\textit{G}_{1}) = (\textit{L}_{\textit{S}} \setminus \textit{L}(\textit{G}_{1})) \cup \overline{\textit{L}_{\textit{S}}}$$

As L_S is regular, also $\overline{L_S}$ is regular (and context-free).

So it suffices to show that $L_S \setminus L(G_1)$ is context-free.

The words in $L_S \setminus L(G_1)$ are of the form:

$$L_S \setminus L(G_1) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_j \cdots w_k \}$$

We distinguish three cases...

Proof continued

The words in $L_S \setminus L(G_1)$ are of the form:

$$L_{\mathcal{S}} \setminus L(G_1) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_j \cdots w_k \}$$

We distinguish three cases:

Proof continued

The words in $L_S \setminus L(G_1)$ are of the form:

$$L_S \setminus L(G_1) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_j \cdots w_k \}$$

We distinguish three cases:

$$L_{\mathcal{S}} \setminus L(G_1) = L_{smaller} \cup L_{larger} \cup L_{equal}$$

where

$$L_{\text{smaller}} = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid |w| < |w_j \cdots w_k| \}$$

$$L_{\text{larger}} = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid |w| > |w_j \cdots w_k| \}$$

$$L_{\text{equal}} = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid |w| = |w_j \cdots w_k| \& w \neq w_j \dots w_k \}$$

Proof continued

The words in $L_S \setminus L(G_1)$ are of the form:

$$L_{\mathcal{S}} \setminus L(G_1) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_j \cdots w_k \}$$

We distinguish three cases:

$$L_S \setminus L(G_1) = L_{smaller} \cup L_{larger} \cup L_{equal}$$

where

$$\begin{split} L_{\text{smaller}} &= \{ w \; \# \; \langle k \rangle \cdots \langle j \rangle \; \mid \; |w| < |w_j \cdots w_k| \} \\ L_{\text{larger}} &= \{ w \; \# \; \langle k \rangle \cdots \langle j \rangle \; \mid \; |w| > |w_j \cdots w_k| \} \\ L_{\text{equal}} &= \{ w \; \# \; \langle k \rangle \cdots \langle j \rangle \; \mid \; |w| = |w_j \cdots w_k| \; \& \; w \neq w_j \ldots w_k \} \end{split}$$

Each of these languages is context-free, thus $L_S \setminus L(G_1)$ is.

Proof continued

The words in $L_S \setminus L(G_1)$ are of the form:

$$L_S \setminus L(G_1) = \{ w \# \langle k \rangle \cdots \langle j \rangle \mid w \neq w_i \cdots w_k \}$$

We distinguish three cases:

$$L_S \setminus L(G_1) = L_{smaller} \cup L_{larger} \cup L_{equal}$$

where

$$\begin{split} & L_{\text{smaller}} = \{ w \; \# \; \langle k \rangle \cdots \langle j \rangle \; \mid \; |w| < |w_j \cdots w_k| \} \\ & L_{\text{larger}} = \{ w \; \# \; \langle k \rangle \cdots \langle j \rangle \; \mid \; |w| > |w_j \cdots w_k| \} \\ & L_{\text{equal}} = \{ w \; \# \; \langle k \rangle \cdots \langle j \rangle \; \mid \; |w| = |w_j \cdots w_k| \; \& \; w \neq w_j \ldots w_k \} \end{split}$$

Each of these languages is context-free, thus $L_S \setminus L(G_1)$ is.

Exercise

Give context-free grammars for L_{smaller} , L_{larger} and L_{equal} .

Semidecidability

Recall that a decision $P \subseteq \Sigma^*$ is called

- **decidable** if the *P* is recursive,
- **semidecidable** if the *P* is recursively enumerable.

Semidecidability

Recall that a decision $P \subseteq \Sigma^*$ is called

- decidable if the P is recursive,
- **semidecidable** if the *P* is recursively enumerable.

Examples of (undecidable but) semidecidable problems:

- halting problem,
- Post correspondence problem,
- non-empty intersection of context-free languages,
- ambiguity of context-free grammars.

Semidecidability

Recall that a decision $P \subseteq \Sigma^*$ is called

- **decidable** if the *P* is recursive,
- **semidecidable** if the *P* is recursively enumerable.

Examples of (undecidable but) semidecidable problems:

- halting problem,
- Post correspondence problem,
- non-empty intersection of context-free languages,
- ambiguity of context-free grammars.

There exist algorithms for these problems that always halt if the answer is yes, but may or may not halt if the answer is no.

Validity of a formula ϕ in **predicate logic** is undecidable.

Validity of a formula ϕ in **predicate logic** is undecidable.

In 1900 **David Hilbert** (1862-1941) formulated 23 scientific problems.

Validity of a formula ϕ in **predicate logic** is undecidable.

In 1900 **David Hilbert** (1862-1941) formulated 23 scientific problems. Among them the following:

Diophantine equations consist of polynomials with one or more variables and coefficients in \mathbb{Z} . For example:

$$3x^2y - 7y^2z^3 - 18 = 0$$
$$-7y^2 + 8z^3 = 0$$

Validity of a formula ϕ in **predicate logic** is undecidable.

In 1900 **David Hilbert** (1862-1941) formulated 23 scientific problems. Among them the following:

Diophantine equations consist of polynomials with one or more variables and coefficients in \mathbb{Z} . For example:

$$3x^2y - 7y^2z^3 - 18 = 0$$
$$-7y^2 + 8z^3 = 0$$

Hilbert's 10th problem: Give an algorithm to decide whether a system of Diophantine equations has a solution in \mathbb{Z} .

Validity of a formula ϕ in **predicate logic** is undecidable.

In 1900 **David Hilbert** (1862-1941) formulated 23 scientific problems. Among them the following:

Diophantine equations consist of polynomials with one or more variables and coefficients in \mathbb{Z} . For example:

$$3x^2y - 7y^2z^3 - 18 = 0$$
$$-7y^2 + 8z^3 = 0$$

Hilbert's 10th problem: Give an algorithm to decide whether a system of Diophantine equations has a solution in \mathbb{Z} .

In 1970 Yuri Matiyasevich proved that this is undecidable.