\begin{frame}{Semidecidability}
\begin{goal}{}
Recall that a decision $P \subseteq \Sigma^*$ is called
\begin{itemize}
\item \emph{decidable} if the $P$ is recursive,
\item \emph{semidecidable} if the $P$ is recursively enumerable.
\end{itemize}
\end{goal}
\pause
\begin{exampleblock}{}
Examples of (undecidable but) semidecidable problems:
\begin{itemize}
\item halting problem,
\item Post correspondence problem,
\item non-empty intersection of context-free languages,
\item ambiguity of context-free grammars.
\end{itemize}
\end{exampleblock}
\pause\medskip
There exist algorithms for these problems that always halt if the answer is yes,
but \alert{may or may not halt if the answer is no}.
\bigskip
\end{frame}