\begin{frame}{Equality of Context-Free Languages (3)}
\begin{block}{Proof continued}
The words in $L_S \setminus L(G_1)$ are of the form:
\begin{salign}
\alert{L_S \setminus L(G_1)
= \{\, w \;\#\; \langle k \rangle \cdots \langle j \rangle \;\mid\; w \ne w_j \cdots w_k\,\}}
\end{salign}
We distinguish three cases:\pause
\begin{talign}
L_S \setminus L(G_1) = \alert{L_\text{smaller} \cup L_\text{larger} \cup L_\text{equal}}
\end{talign}
where
\begin{talign}
L_\text{smaller} &= \{ w \;\#\; \langle k \rangle \cdots \langle j \rangle \;\mid\; |w| < |w_j \cdots w_k| \} \\
L_\text{larger} &= \{ w \;\#\; \langle k \rangle \cdots \langle j \rangle \;\mid\; |w| > |w_j \cdots w_k| \} \\
L_\text{equal} &= \{ w \;\#\; \langle k \rangle \cdots \langle j \rangle \;\mid\; |w| = |w_j \cdots w_k| \;\&\; w \ne w_j \ldots w_k\}
\end{talign}
\pause
Each of these languages is context-free, thus $L_S \setminus L(G_1)$ is.
\end{block}
\pause\medskip
\begin{exampleblock}{Exercise}
Give context-free grammars for $L_\text{smaller}$, $L_\text{larger}$ and $L_\text{equal}$.
\end{exampleblock}
\vspace{10cm}
\end{frame}
\themex{Semidecidability}