\begin{frame}{Palindromes in Context-Free Languages}
\begin{goal}{Theorem}
It is undecidable whether a context-free languages contains a palindrome
(a word $w = w^R$).
\end{goal}
\pause
\begin{proof}
We reduce the PCP to the above problem.
\pause\medskip
Given a PCP instance $X$: \alert{$(w_1,v_1),\ldots,(w_n,v_n)$}.
\pause\medskip
We define a context-free grammar $G$:
\begin{talign}
\alert{S \to w_i \,S\, v_i^R \mid w_i \,\#\,v_i^R}
\end{talign}
for $1 \le i \le n$. Here $\#$ is a fresh symbol.
\pause\medskip
$L(G)$ contains a palindrome \;$\iff$\; PCP $X$ has a solution.
\end{proof}
\end{frame}