Automata Theory :: Context-Sensitive Grammars and Linear Bounded Automata

Jörg Endrullis

Vrije Universiteit Amsterdam

Context-Sensitive Grammars

A grammar is **context-sensitive** if for every rule $x \to y$ it holds: $|x| \le |y|$ (and $x \ne \lambda$)

Note: the words cannot get shorter during derivation.

Context-Sensitive Grammars

A grammar is **context-sensitive** if for every rule $x \to y$ it holds: $|x| \le |y|$ (and $x \ne \lambda$)

Note: the words cannot get shorter during derivation.

For every context-sensitive grammar G_1 there exists a grammar G_2 with rules of the form $xAy \rightarrow xvy$ with $v \neq \lambda$ such that $L(G_1) = L(G_2)$.

(Compare with the shape of rules in a context-free grammar.)

A grammar is **context-sensitive** if for every rule $x \to y$ it holds: $|x| \le |y|$ (and $x \ne \lambda$)

Note: the words cannot get shorter during derivation.

For every context-sensitive grammar G_1 there exists a grammar G_2 with rules of the form $xAy \rightarrow xvy$ with $v \neq \lambda$ such that $L(G_1) = L(G_2)$.

(Compare with the shape of rules in a context-free grammar.)

A language *L* is **context-sensitive** if there exists a context-sensitive grammar *G* with $L(G) = L \setminus \{\lambda\}$.

Example

The language

 $\{a^nb^nc^n \mid n \ge 1\}$

is generated by the context-sensitive grammar:

 $S
ightarrow aAbc \mid abc$ $A
ightarrow aAB \mid aB$ Bb
ightarrow bBBc
ightarrow bcc

Example derivation:

 $S \Rightarrow aAbc \Rightarrow aaABbc \Rightarrow aaABbc$ $\Rightarrow aaAbbcc \Rightarrow aaaBbbcc \Rightarrow aaabBbcc$ $\Rightarrow aaabbBcc \Rightarrow aaabbbccc$

A linear bounded automaton, short LBA, is a nondeterministic TM $(Q, \Sigma, \Gamma, \delta, q_0, F)$.

```
Note that there is no \Box !
```

Instead, we have symbols [and], and

[and] are placed around the input word

- for every $q \in Q$, $\delta(q, [)$ is of the form (q', [, R)
- for every $q \in Q$, $\delta(q,]$ is of the form (q',], L

The head can only move within the bounds of the input word!

A linear bounded automaton, short LBA, is a nondeterministic TM $(Q, \Sigma, \Gamma, \delta, q_0, F)$.

```
Note that there is no \Box !
```

Instead, we have symbols [and], and

[and] are placed around the input word

- for every $q \in Q$, $\delta(q, [)$ is of the form (q', [, R)
- for every $q \in Q$, $\delta(q,]$ is of the form (q',], L

The head can only move within the bounds of the input word!

So the memory is restricted by the length of the input word.

A linear bounded automaton, short LBA, is a nondeterministic TM $(Q, \Sigma, \Gamma, \delta, q_0, F)$.

```
Note that there is no \Box !
```

Instead, we have symbols [and], and

[and] are placed around the input word

- for every $q \in Q$, $\delta(q, [)$ is of the form (q', [, R)
- for every $q \in Q$, $\delta(q,]$ is of the form (q',], L

The head can only move within the bounds of the input word!

So the memory is restricted by the length of the input word.

The **language** L(M) **accepted by** LBA $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is { $w \in \Sigma^+ \mid q_0[w] \vdash^+ [uqv]$ for some $q \in F, u, v \in \Gamma^*$ }

From Context-Sensitive Grammars to LBA's

Theorem

For every context-sensitive grammar *G* there exists an LBA *M* such that L(M) = L(G).

From Context-Sensitive Grammars to LBA's

Theorem

For every context-sensitive grammar *G* there exists an LBA *M* such that L(M) = L(G).

Proof.

A derivation of $w \in L(G)$ contains only words of length $\leq |w|$.

A nondeterministic Turing machine can simulate (guess) this derivation without leaving the bounds of w.

Theorem

For every LBA M, the language L(M) is context-sensitive.

Theorem

For every LBA M, the language L(M) is context-sensitive.

Proof sketch.

As before, build an unrestricted grammar G with L(G) = L(M).

Theorem

For every LBA M, the language L(M) is context-sensitive.

Proof sketch.

As before, build an unrestricted grammar G with L(G) = L(M).

All productions rules are context-sensitive, except for:

 $\Box \to \lambda$

Theorem

For every LBA M, the language L(M) is context-sensitive.

Proof sketch.

As before, build an unrestricted grammar *G* with L(G) = L(M).

All productions rules are context-sensitive, except for:

$\Box \to \lambda$

However, a linear bounded automaton does not use \Box ! (It never leaves the borders of the input word.)

Theorem

For every LBA M, the language L(M) is context-sensitive.

Proof sketch.

As before, build an unrestricted grammar *G* with L(G) = L(M).

All productions rules are context-sensitive, except for:

$\Box \to \lambda$

However, a linear bounded automaton does not use \Box ! (It never leaves the borders of the input word.)

Therefore, we can drop

• the rule $\Box \to \lambda$

Theorem

For every LBA M, the language L(M) is context-sensitive.

Proof sketch.

As before, build an unrestricted grammar G with L(G) = L(M).

All productions rules are context-sensitive, except for:

$\Box \to \lambda$

However, a linear bounded automaton does not use \Box ! (It never leaves the borders of the input word.)

Therefore, we can drop

- the rule $\Box \rightarrow \lambda$, and
- the rules $S \rightarrow V_{\Box}^{\Box}S \mid SV_{\Box}^{\Box}$.

Theorem

For every LBA M, the language L(M) is context-sensitive.

Proof sketch.

As before, build an unrestricted grammar G with L(G) = L(M).

All productions rules are context-sensitive, except for:

$\Box \to \lambda$

However, a linear bounded automaton does not use \Box ! (It never leaves the borders of the input word.)

Therefore, we can drop

• the rule $\Box \rightarrow \lambda$, and

• the rules $S \rightarrow V_{\Box}^{\Box}S \mid SV_{\Box}^{\Box}$.

(In step 1, we derive from S a word $V_{a_0}^{a_1} V_{a_2}^{a_2} \cdots V_{a_{n-1}}^{a_{n-1}} V_{a_n}^{a_n}$.)

Theorem

If L_1 and L_2 are context-sensitive, then so are

 $L_1 \cup L_2 \quad L_1 \cap L_2 \quad L_1^R \quad L_1 L_2 \quad L_1^* \quad \overline{L_1} \quad L_1 \setminus L_2$

Theorem

If L_1 and L_2 are context-sensitive, then so are

$$L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1^R \qquad L_1L_2 \qquad L_1^* \qquad \overline{L_1} \qquad L_1 \setminus L_2$$

Proof.

Theorem

If L_1 and L_2 are context-sensitive, then so are

 $L_1 \cup L_2 \quad L_1 \cap L_2 \quad L_1^R \quad L_1 L_2 \quad L_1^* \quad \overline{L_1} \quad L_1 \setminus L_2$

Proof.

• $L_1 \cup L_2$, L_1^R , $L_1 L_2$: proof via grammars (same as before)

Theorem

If L_1 and L_2 are context-sensitive, then so are

 $L_1 \cup L_2 \quad L_1 \cap L_2 \quad L_1^R \quad L_1 L_2 \quad L_1^* \quad \overline{L_1} \quad L_1 \setminus L_2$

Proof.

■ $L_1 \cup L_2$, L_1^R , L_1L_2 : proof via grammars (same as before) ■ L_1^* : $S \to S_1S \mid S_1$ where *S* is the fresh starting variable

Theorem

If L_1 and L_2 are context-sensitive, then so are

 $L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1^R \qquad L_1L_2 \qquad L_1^* \qquad \overline{L_1} \qquad L_1 \setminus L_2$

Proof.

• $L_1 \cup L_2$, L_1^R , L_1L_2 : proof via grammars (same as before)

• L_1^* : $S \to S_1S \mid S_1$ where S is the fresh starting variable

L₁ \cap L₂: run both linear bounded automata in sequence

Theorem

If L_1 and L_2 are context-sensitive, then so are

 $L_1 \cup L_2 \quad L_1 \cap L_2 \quad L_1^R \quad L_1 L_2 \quad L_1^* \quad \overline{L_1} \quad L_1 \setminus L_2$

Proof.

• $L_1 \cup L_2$, L_1^R , L_1L_2 : proof via grammars (same as before)

• L_1^* : $S \to S_1S \mid S_1$ where S is the fresh starting variable

- $L_1 \cap L_2$: run both linear bounded automata in sequence
- $\blacksquare L_1 \setminus L_2 = L_1 \cap \overline{L_2}$

Theorem

If L_1 and L_2 are context-sensitive, then so are

 $L_1 \cup L_2 \quad L_1 \cap L_2 \quad L_1^R \quad L_1 L_2 \quad L_1^* \quad \overline{L_1} \quad L_1 \setminus L_2$

Proof.

- $L_1 \cup L_2$, L_1^R , L_1L_2 : proof via grammars (same as before)
- L_1^* : $S \to S_1 S \mid S_1$ where S is the fresh starting variable
- L₁ \cap L₂: run both linear bounded automata in sequence
- $\blacksquare L_1 \setminus L_2 = L_1 \cap \overline{L_2}$
- Immerman and Szelepcsényi (1987)

Theorem

If L_1 and L_2 are context-sensitive, then so are

 $L_1 \cup L_2 \quad L_1 \cap L_2 \quad L_1^R \quad L_1 L_2 \quad L_1^* \quad \overline{L_1} \quad L_1 \setminus L_2$

Proof.

- $L_1 \cup L_2$, L_1^R , L_1L_2 : proof via grammars (same as before)
- L_1^* : $S \to S_1 S \mid S_1$ where S is the fresh starting variable
- L₁ \cap L₂: run both linear bounded automata in sequence
- $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$
- Immerman and Szelepcsényi (1987)

It is unknown whether **deterministic** LBA's are equally expressive as **nondeterministic** LBA's.

Theorem

Context-sensitive languages are recursive.

Theorem

Context-sensitive languages are recursive.

Proof.

Let G be a context-sensitive grammar.

Theorem

Context-sensitive languages are recursive.

Proof.

Let *G* be a context-sensitive grammar.

We argue that there exists a Turing machine M accepting L(G).

Theorem

Context-sensitive languages are recursive.

Proof.

Let G be a context-sensitive grammar.

We argue that there exists a Turing machine M accepting L(G).

Let $w \in T^*$ be the input word.

Theorem

Context-sensitive languages are recursive.

Proof.

Let G be a context-sensitive grammar.

We argue that there exists a Turing machine M accepting L(G).

Let $w \in T^*$ be the input word.

The are finitely words over $V \cup T$ of length $\leq |w|$:

Theorem

Context-sensitive languages are recursive.

Proof.

Let G be a context-sensitive grammar.

We argue that there exists a Turing machine M accepting L(G).

Let $w \in T^*$ be the input word.

The are finitely words over $V \cup T$ of length $\leq |w|$:

• *M* can compute the set $\{ u \mid S \Rightarrow^* u, |u| \le |w| \}$

Theorem

Context-sensitive languages are recursive.

Proof.

Let G be a context-sensitive grammar.

We argue that there exists a Turing machine M accepting L(G).

Let $w \in T^*$ be the input word.

The are finitely words over $V \cup T$ of length $\leq |w|$:

- *M* can compute the set { $u | S \Rightarrow^* u$, $|u| \le |w|$ }
- M accepts w if w is among these words.
 (Otherwise M halts in a non-accepting state.)

Theorem

Context-sensitive languages are recursive.

Proof.

Let G be a context-sensitive grammar.

We argue that there exists a Turing machine M accepting L(G).

Let $w \in T^*$ be the input word.

The are finitely words over $V \cup T$ of length $\leq |w|$:

- *M* can compute the set $\{ u \mid S \Rightarrow^* u, |u| \le |w| \}$
- M accepts w if w is among these words.
 (Otherwise M halts in a non-accepting state.)

Then *M* accepts L(G) and always reaches a halting state.

Theorem

Not every recursive language is context-sensitive.

Theorem

Not every recursive language is context-sensitive.

Proof.

 $\boldsymbol{\Sigma} = \{0,1\}.$ There exists an injective, computable function

 $h: \{ G \mid G \text{ context-sensitive } \} \rightarrow \{ 0, 1 \}^*$

such that the **image** of *h* is **recursive**. For example:

h(0) = 010	$h(\rightarrow) = 01110$	$h(A_i) = 01^{i+4}0$
h(1) = 0110	<i>h</i> (;) = 011110	

Theorem

Not every recursive language is context-sensitive.

Proof.

 $\boldsymbol{\Sigma} = \{0,1\}.$ There exists an injective, computable function

 $h: \{ G \mid G \text{ context-sensitive } \} \rightarrow \{ 0, 1 \}^*$

such that the **image** of *h* is **recursive**. For example:

h(0) = 010	$h(\to) = 01110$	$h(A_i) = 01^{i+4}0$
h(1) = 0110	h(;) = 011110	

Define $L = \{ h(G) \mid G \text{ context-sensitive } \land h(G) \notin L(G) \}.$

Theorem

Not every recursive language is context-sensitive.

Proof.

 $\boldsymbol{\Sigma} = \{0,1\}.$ There exists an injective, computable function

 $h: \{ G \mid G \text{ context-sensitive } \} \rightarrow \{ 0, 1 \}^*$

such that the **image** of *h* is **recursive**. For example:

h(0) = 010	$h(\rightarrow) = 01110$	$h(A_i) = 01^{i+4}0$
h(1) = 0110	<i>h</i> (;) = 011110	

Define $L = \{ h(G) \mid G \text{ context-sensitive } \land h(G) \notin L(G) \}$. Then *L* is recursive (by the above assumptions on *h*).

Theorem

Not every recursive language is context-sensitive.

Proof.

 $\boldsymbol{\Sigma} = \{0,1\}.$ There exists an injective, computable function

 $h: \{ G \mid G \text{ context-sensitive } \} \rightarrow \{ 0, 1 \}^*$

such that the **image** of *h* is **recursive**. For example:

<i>h</i> (0) = 010	$h(\to) = 01110$	$h(A_i) = 01^{i+4}0$
h(1) = 0110	<i>h</i> (;) = 011110	

Define $L = \{ h(G) \mid G \text{ context-sensitive } \land h(G) \notin L(G) \}$. Then *L* is recursive (by the above assumptions on *h*).

Assume $L = L(G_0)$ for a context-sensitive grammar G_0 .

Theorem

Not every recursive language is context-sensitive.

Proof.

 $\boldsymbol{\Sigma} = \{0,1\}.$ There exists an injective, computable function

 $h: \{ G \mid G \text{ context-sensitive } \} \rightarrow \{ 0, 1 \}^*$

such that the **image** of *h* is **recursive**. For example:

h(0) = 010	$h(\to) = 01110$	$h(A_i) = 01^{i+4}0$
h(1) = 0110	<i>h</i> (;) = 011110	

Define $L = \{ h(G) \mid G \text{ context-sensitive } \land h(G) \notin L(G) \}$. Then *L* is recursive (by the above assumptions on *h*).

Assume $L = L(G_0)$ for a context-sensitive grammar G_0 . Then $h(G_0) \in L \iff h(G_0) \notin L(G_0) \iff h(G_0) \notin L$

Theorem

Not every recursive language is context-sensitive.

Proof.

 $\boldsymbol{\Sigma} = \{0,1\}.$ There exists an injective, computable function

 $h: \{ G \mid G \text{ context-sensitive } \} \rightarrow \{ 0, 1 \}^*$

such that the **image** of *h* is **recursive**. For example:

<i>h</i> (0) = 010	$h(\to) = 01110$	$h(A_i) = 01^{i+4}0$
h(1) = 0110	<i>h</i> (;) = 011110	

Define $L = \{ h(G) \mid G \text{ context-sensitive } \land h(G) \notin L(G) \}$. Then *L* is recursive (by the above assumptions on *h*).

Assume $L = L(G_0)$ for a context-sensitive grammar G_0 . Then

 $h(G_0) \in L \iff h(G_0) \notin L(G_0) \iff h(G_0) \notin L$

Contradiction!