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Context-Sensitive Grammars

A grammar is context-sensitive if for every rule x → y it holds:

|x | ≤ |y | (and x 6= λ)

Note: the words cannot get shorter during derivation.

For every context-sensitive grammar G1
there exists a grammar G2 with rules of the form

xAy → xvy with v 6= λ

such that L(G1) = L(G2).

(Compare with the shape of rules in a context-free grammar.)

A language L is context-sensitive if there exists a
context-sensitive grammar G with L(G) = L \ { λ }.
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Example

The language

{anbncn | n ≥ 1 }

is generated by the context-sensitive grammar:

S → aAbc | abc
A → aAB | aB

Bb → bB
Bc → bcc

Example derivation:

S ⇒ aAbc ⇒ aaABbc ⇒ aaAbBc⇒ aaAbbcc ⇒ aaaBbbcc ⇒ aaabBbcc⇒ aaabbBcc ⇒ aaabbbccc
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Linear Bounded Automata

A linear bounded automaton, short LBA,
is a nondeterministic TM (Q, Σ, Γ, δ,q0,F ).

Note that there is no 2 !

Instead, we have symbols [ and ], and
[ and ] are placed around the input word

for every q ∈ Q, δ(q, [ ) is of the form (q ′, [ ,R)

for every q ∈ Q, δ(q, ] ) is of the form (q ′, ] ,L)

The head can only move within the bounds of the input word!

So the memory is restricted by the length of the input word.

The language L(M) accepted by LBA M = (Q, Σ, Γ, δ,q0,F ) is

{w ∈ Σ+ | q0[w ] `+ [uqv ] for some q ∈ F ,u, v ∈ Γ∗ }
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From Context-Sensitive Grammars to LBA’s

Theorem
For every context-sensitive grammar G there exists an LBA M
such that L(M) = L(G).

Proof.
A derivation of w ∈ L(G) contains only words of length ≤ |w |.

A nondeterministic Turing machine can simulate (guess) this
derivation without leaving the bounds of w .
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From LBA’s to Context-Sensitive Grammars

Theorem
For every LBA M, the language L(M) is context-sensitive.

Proof sketch.
As before, build an unrestricted grammar G with L(G) = L(M).

All productions rules are context-sensitive, except for:

2 → λ

However, a linear bounded automaton does not use 2 !
(It never leaves the borders of the input word.)

Therefore, we can drop
the rule 2 → λ, and

the rules S → V2
2 S | SV2

2 .
(In step 1, we derive from S a word V a1

q0[a1
V a2

a2
· · ·V an−1

an−1
V an

an]
.)
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Basic Properties of Context-Sensitive Languages

Theorem
If L1 and L2 are context-sensitive, then so are

L1 ∪ L2 L1 ∩ L2 LR
1 L1L2 L∗1 L1 L1 \ L2

Proof.

L1 ∪ L2, LR
1 , L1L2: proof via grammars (same as before)

L∗1: S → S1S | S1 where S is the fresh starting variable

L1 ∩ L2: run both linear bounded automata in sequence

L1 \ L2 = L1 ∩ L2

L1: proven by Immerman and Szelepcsényi (1987)

It is unknown whether deterministic LBA’s are equally
expressive as nondeterministic LBA’s.
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Context-Sensitive Languages are Recursive

Theorem
Context-sensitive languages are recursive.

Proof.
Let G be a context-sensitive grammar.

We argue that there exists a Turing machine M accepting L(G).

Let w ∈ T ∗ be the input word.

The are finitely words over V ∪ T of length ≤ |w |:
M can compute the set {u | S ⇒∗ u, |u| ≤ |w | }

M accepts w if w is among these words.
(Otherwise M halts in a non-accepting state.)

Then M accepts L(G) and always reaches a halting state.
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Context-Sensitive versus Recursive Languages

Theorem
Not every recursive language is context-sensitive.

Proof.
Σ = {0,1}. There exists an injective, computable function

h : {G | G context-sensitive } → {0,1 }∗

such that the image of h is recursive. For example:

h(0) = 010 h(→) = 01110 h(Ai) = 01i+40
h(1) = 0110 h(; ) = 011110

Define L = {h(G) | G context-sensitive ∧ h(G) 6∈ L(G) }.
Then L is recursive (by the above assumptions on h).

Assume L = L(G0) for a context-sensitive grammar G0. Then

h(G0) ∈ L ⇐⇒ h(G0) 6∈ L(G0) ⇐⇒ h(G0) 6∈ L

Contradiction!
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