\begin{frame}{Context-Sensitive Languages are Recursive}
\begin{goal}{Theorem}
Context-sensitive languages are recursive.
\end{goal}
\pause
\begin{proof}
Let $G$ be a context-sensitive grammar.
\pause\medskip
We argue that there exists a Turing machine $M$ accepting $L(G)$.
\pause\medskip
Let $w \in T^*$ be the input word.
\pause\medskip
The are finitely words over $V \cup T$ of length $\leq |w|$:
\begin{itemize}
\pause
\item $M$ can compute the set $\{\, u \mid S \Rightarrow^* u,\; |u| \le |w| \,\}$
\pause
\item $M$ accepts $w$ if $w$ is among these words.\\
(Otherwise $M$ halts in a non-accepting state.)
\end{itemize}
\pause
Then \alert{$M$ accepts $L(G)$} and \alert{always reaches a halting state}.
\end{proof}
\end{frame}