\begin{frame}{Basic Properties of Context-Sensitive Languages}
\begin{goal}{Theorem}
If $L_1$ and $L_2$ are context-sensitive, then so are
\begin{talign}
L_1 \cup L_2 && L_1 \cap L_2 && L_1^R && L_1 L_2 && L_1^* && \overline{L_1} && L_1 \setminus L_2
\end{talign}
\end{goal}
\pause
\begin{proof}
\begin{itemize}
\pause
\item \alert{$L_1 \cup L_2$}, \alert{$L_1^R$}, \alert{$L_1 L_2$}: proof via grammars (same as before)
\pause
\item \alert{$L_1^*$}: $S \to S_1 S \mid S_1$ where $S$ is the fresh starting variable
\pause
\item \alert{$L_1 \cap L_2$}: run both linear bounded automata in sequence
\pause
\item \alert{$L_1 \setminus L_2 = L_1 \cap \overline{L_2}$}
\pause
\item \alert{$\overline{L_1}$}: proven by Immerman and Szelepcs\'enyi (1987) \qedhere
\end{itemize}
\end{proof}
\pause\medskip
\begin{goal}{}
It is \alert{unknown} whether \emph{deterministic} LBA's
are equally expressive as \emph{nondeterministic} LBA's.
\end{goal}
\end{frame}