Automata Theory :: Unrestricted Grammars

Jörg Endrullis

Vrije Universiteit Amsterdam

Unrestricted Grammars

What class of grammars corresponds to Turing machines?

An unrestricted grammar G contains rules

$$
x \rightarrow y
$$

where $x \neq \lambda$.
Note that there is no restriction other than x being non-empty.

Theorem

A language L is generated by an unrestricted grammar $\Longleftrightarrow L$ is accepted by a Turing machine.

From Unrestricted Grammars to Turing Machines

Theorem

For every unrestricted G there is a Turing machine M such that

$$
L(M)=L(G)
$$

Construction

Input for M is a word w (written on the tape).
M can do a breadth-first search for a derivation of w from S.
If a derivation is found, then w is accepted by M.
Then $L(M)=L(G)$.

From Turing Machines to Unrestricted Grammars

Theorem

For every TM M there is a grammar G with $L(G)=L(M)$.

Construction

The variables are S, T, \square and $V_{\gamma}^{\alpha}, V_{q \gamma}^{\alpha}$ for every $\alpha \in \Sigma \cup\{\square\}, \gamma \in \Gamma$ and $q \in Q$.
Step 1: guessing the word w

$$
\begin{array}{ll}
S \rightarrow V_{\square}^{\square} S\left|S V_{\square}^{\square}\right| T \\
T \rightarrow T V_{a}^{a} \mid V_{q_{0} a}^{a} \quad \text { for every } a \in \Sigma
\end{array}
$$

After step 1, we have derived something of the form

$$
V_{\square}^{\square} \cdots V_{\square}^{\square} V_{q_{0} a_{1}}^{a_{1}} V_{a_{2}}^{a_{2}} V_{a_{3}}^{a_{3}} \cdots V_{a_{n}}^{a_{n}} V_{\square}^{\square} \cdots V_{\square}^{\square}
$$

where $w=a_{1} a_{2} \cdots a_{n}$.
Next, the TM is simulated using the lower line (the subscripts).

From Turing Machines to Unrestricted Grammars

Construction continued

Step 2: simulating the TM (in the subscripts)

$$
\begin{array}{ll}
V_{q c}^{\alpha} V_{\gamma}^{\beta} \rightarrow V_{d}^{\alpha} V_{q^{\prime} \gamma}^{\beta} & \text { if } \delta(q, c)=\left(q^{\prime}, d, R\right) \\
V_{\gamma}^{\beta} V_{q c}^{\alpha} \rightarrow V_{q^{\prime} \gamma}^{\beta} V_{d}^{\alpha} & \text { if } \delta(q, c)=\left(q^{\prime}, d, L\right)
\end{array}
$$

for every $\alpha, \beta \in \Sigma \cup\{\square\}$ and $\gamma \in \Gamma$.
Step 3: If TM reaches accepting state, then generate w.
(From the superscripts left unchanged in step 2.)

$$
\begin{aligned}
V_{q \gamma}^{\alpha} & \rightarrow \alpha \quad \text { for every } q \in F \\
\beta V_{\gamma}^{\alpha} & \rightarrow \beta \alpha \\
V_{\gamma}^{\alpha} \beta & \rightarrow \alpha \beta \\
\square & \rightarrow \lambda
\end{aligned}
$$

for every $\alpha, \beta \in \Sigma \cup\{\square\}$ and $\gamma \in \Gamma$.
Then $L(G)=L(M)$.

Example

Consider the TM with $\Sigma=\{a, b, c\}, \Gamma=\Sigma \cup\{\square\}, F=\left\{q_{2}\right\}$ and

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=\left(q_{0}, c, R\right) & \delta\left(q_{0}, c\right)=\left(q_{1}, b, L\right) \\
\delta\left(q_{0}, b\right)=\left(q_{0}, b, R\right) & \delta\left(q_{1}, b\right)=\left(q_{2}, a, R\right)
\end{array}
$$

This TM accepts the language $L\left((a+b)^{*} b c(a+b+c)^{*}\right)$.
The resulting grammar is:

$$
\begin{array}{lr}
S \rightarrow V_{\square}^{\square} S\left|S V_{\square}^{\square}\right| T & \\
T \rightarrow T V_{a}^{a}\left|T V_{b}^{b}\right| T V_{c}^{c}\left|V_{q_{0} a}^{a}\right| & V_{q_{0} b}^{b} \mid V_{q_{0} c}^{c} \\
V_{q_{0} a}^{\alpha} V_{\gamma}^{\beta} \rightarrow V_{c}^{\alpha} V_{q_{0} \gamma}^{\beta} & V_{q_{2 \gamma}}^{\alpha} \rightarrow \alpha \\
V_{q_{0} b}^{\alpha} V_{\gamma}^{\beta} \rightarrow V_{b}^{\alpha} V_{q_{0} \gamma}^{\beta} & \beta V_{\gamma}^{\alpha} \rightarrow \beta \alpha \\
V_{\gamma}^{\beta} V_{q_{0} c}^{\alpha} \rightarrow V_{q_{1} \gamma}^{\beta} V_{b}^{\alpha} & V_{\gamma}^{\alpha} \beta \rightarrow \alpha \beta \\
V_{q_{1} b}^{\alpha} V_{\gamma}^{\beta} \rightarrow V_{a}^{\alpha} V_{q_{2} \gamma}^{\beta} & \square \rightarrow \lambda
\end{array}
$$

with $\alpha, \beta \in \Sigma \cup\{\square\}$ and $\gamma \in \Gamma$. Exercise: derive abc.

