Automata Theory :: Recursively Enumerable Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Recursively Enumerable Languages

A language L is recursively enumerable if L is accepted by a (deterministic) Turing machine.

Equivalently, a language L is recursively enumerable if there exists a Turing machine enumerates all words in L.

Intuitively, the Turing machine writes on the tape

$$
\# w_{1} \# w_{2} \# w_{3} \# \cdots
$$

such that $L=\left\{w_{1}, w_{2}, w_{3}, \ldots\right\}$.
If L is infinite, this computation never stops! Every word from L will eventually be written on the tape.

Then w_{1}, w_{2}, \ldots is called a recursive enumeration of L.

Turing Machines are Recursively Enumerable

Theorem

Turing machines are recursively enumerable.

Proof.

- A Turing machine can be represented as a word.
- A parser can check whether a word represents a TM. (If so, accept.)

Thus, there is a recursive enumeration of all Turing machines:

$$
M_{1}, M_{2}, \ldots
$$

Formally, we enumerate words describing Turing machines. But the does not matter since we have a universal Turing machine that can execute these descriptions.

Properties of Recursively Enumerable Languages

Union and Intersection

Theorem

If L_{1} and L_{2} are recursively enumerable languages, then so are

$$
L_{1} \cup L_{2} \quad L_{1} \cap L_{2}
$$

Let M_{1} and M_{2} be Turing machines such that

$$
L\left(M_{1}\right)=L_{1} \quad L\left(M_{2}\right)=L_{2}
$$

Create a Turing machine M that runs M_{1} and M_{2} in parallel. (Alternating simulate one step of M_{1} and one step of M_{2}.)

- For $L(M)=L_{1} \cup L_{2}$, let M accept as soon as M_{1} accepts or M_{2} accepts.
- For $L(M)=L_{1} \cap L_{2}$, let M accept as soon as both M_{1} and M_{2} accept.

What about $L_{1} \backslash L_{2}$?

Complement

There exist recursively enumerable languages L, for which the complement \bar{L} is not recursively enumerable.

Proof.

Let $M_{1}, M_{2}, M_{3}, \ldots$ be a recursive enumeration of all TMs.
Define the language L by

$$
L=\left\{a^{i} \mid a^{i} \in L\left(M_{i}\right), i \geq 1\right\}
$$

Then L is recursively enumerable. If \bar{L} was recursively enumerable: $\bar{L}=L\left(M_{k}\right)$ for some $k \geq 1$. Then

$$
a^{k} \in \bar{L} \Longleftrightarrow a^{k} \in L\left(M_{k}\right) \Longleftrightarrow a^{k} \in L
$$

Contradiction. Hence \bar{L} is not recursively enumerable.
$L_{1} \backslash L_{2}$ is not always recursively enumerable since $\bar{L}=\Sigma^{*} \backslash L$.

Concatenation

Theorem

If L_{1} and L_{2} are recursively enumerable languages, then so is

$$
L_{1} L_{2}
$$

Let M_{1} and M_{2} be Turing machines such that

$$
L\left(M_{1}\right)=L_{1} \quad L\left(M_{2}\right)=L_{2}
$$

A split of a word w is a pair $\left(w_{1}, w_{2}\right)$ such that $w=w_{1} w_{2}$.
We call the split good if M_{1} accepts w_{1} and M_{2} accepts w_{2}.
Create a Turing machine N that

- computes all splits of the input word w
- checks all splits in parallel whether they are good
- accepts the input w as soon as a good split is found

Then $L(N)=L_{1} L_{2}$.

Kleene Start

Theorem

If L is a recursively enumerable language, then so is

L*

Let M be a Turing machine such that $L(M)=L$.
A partitioning of a word $w \neq \lambda$ are non-empty words $\left(w_{1}, \ldots, w_{n}\right)$ for some $n \leq|w|$ such that $w=w_{1} w_{2} \cdots w_{n}$.
The partitioning is good if M accepts all words w_{1}, \ldots, w_{n}.
Create a Turing machine N that

- computes all partitionings of the input word $w \neq \lambda$
- checks all partitionings in parallel whether they are good
- accepts the input w as soon as a good partitioning is found Then $L(N)=L^{*}$.

Recursive Languages

Recursive Languages

A language L is recursive if
$\square L$ is recursively enumerable, and

- \bar{L} is recursively enumerable.

Not every recursively enumerable language is recursive!
(See the a few slides back.)

Theorem

A language L is recursive $\Longleftrightarrow L$ is accepted by a deterministic TM M that reaches for every input a halting state.

Proof on the next slide.

Proof

$(\Leftarrow) L$ accepted by deterministic TM M that always halts.
We show that \bar{L} is recursively enumerable.
From M we construct a Turing machine N as follows:

- Add a fresh state q_{f}.
- For all $q \in Q \backslash F$ and $a \in \Gamma$: if $\delta(q, a)$ undefined, define $\delta(q, a)=\left(q_{f}, a, R\right)$.
- Make q_{f} the only final state.

Then $L(N)=\overline{L(M)}$, thus $L(M)$ is recursive.
$(\Rightarrow) L$ and \bar{L} accepted by deterministic TMs M_{1} and M_{2}.
Construct a TM M executes M_{1} and M_{2} in parallel:

- M accepts when M_{1} accepts
- M has non-accepting halting state when M_{2} accepts

Then $L(M)=L\left(M_{1}\right)=L$, and M halts for every input.

Properties of Recursive Languages

Theorem

If L, L_{1} and L_{2} are recursive, then so are

$$
\bar{L} \quad L_{1} \cup L_{2} \quad L_{1} \cap L_{2} \quad L_{1} \backslash L_{2} \quad L^{*} \quad L_{1} L_{2}
$$

Proof.

Let $L, \bar{L}, L_{1}, \overline{L_{1}}, L_{2}$ and $\overline{L_{2}}$ be recursively enumerable (r.e.).

- $\bar{L}: \bar{L}$ and $\bar{L}=L$ are r.e.
- $L_{1} \cup L_{2}: L_{1} \cup L_{2}$ and $\overline{L_{1} \cup L_{2}}=\overline{L_{1}} \cap \overline{L_{2}}$ are r.e.
- $L_{1} \cap L_{2}: L_{1} \cap L_{2}$ and $\overline{L_{1} \cap L_{2}}=\overline{L_{1}} \cup \overline{L_{2}}$ are r.e.
- $L_{1} \backslash L_{2}=L_{1} \cap L_{2}$
- $L_{1} L_{2}, L^{*}$: same proof as for recursively enumerable languages. Observe that the constructed Turing machine halts on all inputs if M_{1}, M_{2} and M do.

