Automata Theory :: Recursively Enumerable Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

A language *L* is **recursively enumerable** if *L* is accepted by a (deterministic) Turing machine.

A language *L* is **recursively enumerable** if *L* is accepted by a (deterministic) Turing machine.

Equivalently, a language *L* is recursively enumerable if there exists a Turing machine **enumerates all words** in *L*.

A language *L* is **recursively enumerable** if *L* is accepted by a (deterministic) Turing machine.

Equivalently, a language *L* is recursively enumerable if there exists a Turing machine **enumerates all words** in *L*.

Intuitively, the Turing machine writes on the tape

 $#w_1 # w_2 # w_3 # \cdots$

such that $L = \{ w_1, w_2, w_3, ... \}$.

A language *L* is **recursively enumerable** if *L* is accepted by a (deterministic) Turing machine.

Equivalently, a language *L* is recursively enumerable if there exists a Turing machine **enumerates all words** in *L*.

Intuitively, the Turing machine writes on the tape

 $#W_1 # W_2 # W_3 # \cdots$

such that $L = \{ w_1, w_2, w_3, ... \}$.

If *L* is infinite, this computation never stops! Every word from *L* will eventually be written on the tape.

A language *L* is **recursively enumerable** if *L* is accepted by a (deterministic) Turing machine.

Equivalently, a language *L* is recursively enumerable if there exists a Turing machine **enumerates all words** in *L*.

Intuitively, the Turing machine writes on the tape

 $#W_1 # W_2 # W_3 # \cdots$

such that $L = \{ w_1, w_2, w_3, ... \}$.

If *L* is infinite, this computation never stops! Every word from *L* will eventually be written on the tape.

Then w_1, w_2, \ldots is called a **recursive enumeration** of *L*.

Theorem

Turing machines are recursively enumerable.

Theorem

Turing machines are recursively enumerable.

Proof.

- A Turing machine can be represented as a word.
- A parser can check whether a word represents a TM. (If so, accept.)

Theorem

Turing machines are recursively enumerable.

Proof.

- A Turing machine can be represented as a word.
- A parser can check whether a word represents a TM. (If so, accept.)

Thus, there is a recursive enumeration of all Turing machines:

 M_1, M_2, \ldots

Theorem

Turing machines are recursively enumerable.

Proof.

- A Turing machine can be represented as a word.
- A parser can check whether a word represents a TM. (If so, accept.)

Thus, there is a recursive enumeration of all Turing machines:

 M_1, M_2, \ldots

Formally, we enumerate words describing Turing machines. But the does not matter since we have a universal Turing machine that can execute these descriptions.

Properties of Recursively Enumerable Languages

Theorem

If L_1 and L_2 are recursively enumerable languages, then so are

 $L_1 \cup L_2$ $L_1 \cap L_2$

Theorem If L_1 and L_2 are recursively enumerable languages, then so are $L_1 \cup L_2$ $L_1 \cap L_2$

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

Theorem

If L_1 and L_2 are recursively enumerable languages, then so are $L_1 \cup L_2$ $L_1 \cap L_2$

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

Create a Turing machine *M* that runs M_1 and M_2 in parallel. (Alternating simulate one step of M_1 and one step of M_2 .)

Theorem

If L_1 and L_2 are recursively enumerable languages, then so are $L_1 \cup L_2 \qquad \qquad L_1 \cap L_2$

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

Create a Turing machine M that runs M_1 and M_2 in parallel. (Alternating simulate one step of M_1 and one step of M_2 .)

• For $L(M) = L_1 \cup L_2$,

let *M* accept as soon as M_1 accepts or M_2 accepts.

Theorem

If L_1 and L_2 are recursively enumerable languages, then so are $L_1 \cup L_2$ $L_1 \cap L_2$

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

Create a Turing machine M that runs M_1 and M_2 in parallel. (Alternating simulate one step of M_1 and one step of M_2 .)

- For $L(M) = L_1 \cup L_2$, let *M* accept as soon as M_1 accepts or M_2 accepts.
- For $L(M) = L_1 \cap L_2$, let *M* accept as soon as both M_1 and M_2 accept.

Theorem

If L_1 and L_2 are recursively enumerable languages, then so are $L_1 \cup L_2$ $L_1 \cap L_2$

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

Create a Turing machine M that runs M_1 and M_2 in parallel. (Alternating simulate one step of M_1 and one step of M_2 .)

- For $L(M) = L_1 \cup L_2$, let *M* accept as soon as M_1 accepts or M_2 accepts.
- For $L(M) = L_1 \cap L_2$,

let *M* accept as soon as both M_1 and M_2 accept.

What about $L_1 \setminus L_2$?

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

Then *L* is recursively enumerable.

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

Then *L* is recursively enumerable.

If \overline{L} was recursively enumerable

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

Then *L* is recursively enumerable.

If \overline{L} was recursively enumerable: $\overline{L} = L(M_k)$ for some $k \ge 1$.

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

Then *L* is recursively enumerable.

If \overline{L} was recursively enumerable: $\overline{L} = L(M_k)$ for some $k \ge 1$. Then

$$a^k \in \overline{L} \iff a^k \in L(M_k)$$

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

Then *L* is recursively enumerable.

If \overline{L} was recursively enumerable: $\overline{L} = L(M_k)$ for some $k \ge 1$. Then

$$a^k \in \overline{L} \iff a^k \in L(M_k) \iff a^k \in L$$

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

Then *L* is recursively enumerable.

If \overline{L} was recursively enumerable: $\overline{L} = L(M_k)$ for some $k \ge 1$. Then

$$a^k \in \overline{L} \iff a^k \in L(M_k) \iff a^k \in L$$

Contradiction. Hence \overline{L} is not recursively enumerable.

There exist recursively enumerable languages L, for which the complement \overline{L} is not recursively enumerable.

Proof.

Let M_1, M_2, M_3, \ldots be a recursive enumeration of all TMs.

Define the language *L* by

$$L = \{ a^i \mid a^i \in L(M_i), i \ge 1 \}$$

Then *L* is recursively enumerable.

If \overline{L} was recursively enumerable: $\overline{L} = L(M_k)$ for some $k \ge 1$. Then

$$a^k \in \overline{L} \iff a^k \in L(M_k) \iff a^k \in L$$

Contradiction. Hence \overline{L} is not recursively enumerable.

 $L_1 \setminus L_2$ is not always recursively enumerable since $\overline{L} = \Sigma^* \setminus L$.

Theorem

If L_1 and L_2 are recursively enumerable languages, then so is

 L_1L_2

Theorem

If L_1 and L_2 are recursively enumerable languages, then so is L_1L_2

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

Theorem

If L_1 and L_2 are recursively enumerable languages, then so is L_1L_2

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

A split of a word *w* is a pair (w_1, w_2) such that $w = w_1 w_2$.

Theorem

If L_1 and L_2 are recursively enumerable languages, then so is L_1L_2

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

A split of a word *w* is a pair (w_1, w_2) such that $w = w_1 w_2$.

We call the split good if M_1 accepts w_1 and M_2 accepts w_2 .

Theorem

If L_1 and L_2 are recursively enumerable languages, then so is L_1L_2

Let M_1 and M_2 be Turing machines such that

$$L(M_1) = L_1 \qquad \qquad L(M_2) = L_2$$

A split of a word *w* is a pair (w_1, w_2) such that $w = w_1 w_2$.

We call the split good if M_1 accepts w_1 and M_2 accepts w_2 . Create a Turing machine *N* that

- computes all splits of the input word w
- checks all splits in parallel whether they are good

• accepts the input *w* as soon as a good split is found Then $L(N) = L_1L_2$.

Theorem

If *L* is a recursively enumerable language, then so is

L*

Theorem

If L is a recursively enumerable language, then so is

L*

Let *M* be a Turing machine such that L(M) = L.

Theorem

If L is a recursively enumerable language, then so is

L*

Let *M* be a Turing machine such that L(M) = L.

A partitioning of a word $w \neq \lambda$ are non-empty words (w_1, \ldots, w_n) for some $n \leq |w|$ such that $w = w_1 w_2 \cdots w_n$.

Theorem

If L is a recursively enumerable language, then so is

L*

Let *M* be a Turing machine such that L(M) = L.

A partitioning of a word $w \neq \lambda$ are non-empty words (w_1, \ldots, w_n) for some $n \leq |w|$ such that $w = w_1 w_2 \cdots w_n$.

The partitioning is good if *M* accepts all words w_1, \ldots, w_n .

Theorem

If L is a recursively enumerable language, then so is

L*

Let *M* be a Turing machine such that L(M) = L.

A partitioning of a word $w \neq \lambda$ are non-empty words (w_1, \ldots, w_n) for some $n \leq |w|$ such that $w = w_1 w_2 \cdots w_n$.

The partitioning is good if *M* accepts all words w_1, \ldots, w_n .

Create a Turing machine N that

- computes all partitionings of the input word $w \neq \lambda$
- checks all partitionings in parallel whether they are good

• accepts the input *w* as soon as a good partitioning is found Then $L(N) = L^*$.

A language L is recursive if

- L is recursively enumerable, and
- \overline{L} is recursively enumerable.

A language L is recursive if

- L is recursively enumerable, and
- \overline{L} is recursively enumerable.

Not every recursively enumerable language is recursive!

(See the a few slides back.)

A language L is recursive if

- L is recursively enumerable, and
- \overline{L} is recursively enumerable.

Not every recursively enumerable language is recursive!

(See the a few slides back.)

Theorem

A language *L* is recursive $\iff L$ is accepted by a deterministic TM *M* that reaches for every input a halting state.

Proof on the next slide.

 (\leftarrow) L accepted by deterministic TM M that always halts.

(\Leftarrow) *L* accepted by deterministic TM *M* that always halts. We show that \overline{L} is recursively enumerable.

(\Leftarrow) *L* accepted by deterministic TM *M* that always halts. We show that \overline{L} is recursively enumerable.

From M we construct a Turing machine N as follows:

- Add a fresh state q_f.
- For all $q \in Q \setminus F$ and $a \in \Gamma$: if $\delta(q, a)$ undefined, define $\delta(q, a) = (q_f, a, R)$.

Make q_f the only final state.

(\Leftarrow) *L* accepted by deterministic TM *M* that always halts. We show that \overline{L} is recursively enumerable.

From M we construct a Turing machine N as follows:

- Add a fresh state q_f.
- For all $q \in Q \setminus F$ and $a \in \Gamma$: if $\delta(q, a)$ undefined, define $\delta(q, a) = (q_f, a, R)$.

Make q_f the only final state.

Then $L(N) = \overline{L(M)}$, thus L(M) is recursive.

(\Leftarrow) *L* accepted by deterministic TM *M* that always halts. We show that \overline{L} is recursively enumerable.

From M we construct a Turing machine N as follows:

- Add a fresh state q_f.
- For all $q \in Q \setminus F$ and $a \in \Gamma$: if $\delta(q, a)$ undefined, define $\delta(q, a) = (q_f, a, R)$.

Make q_f the only final state.

Then $L(N) = \overline{L(M)}$, thus L(M) is recursive.

 (\Rightarrow) L and \overline{L} accepted by deterministic TMs M_1 and M_2 .

(\Leftarrow) *L* accepted by deterministic TM *M* that always halts. We show that \overline{L} is recursively enumerable.

From M we construct a Turing machine N as follows:

- Add a fresh state q_f.
- For all $q \in Q \setminus F$ and $a \in \Gamma$: if $\delta(q, a)$ undefined, define $\delta(q, a) = (q_f, a, R)$.
- Make q_f the only final state.

Then $L(N) = \overline{L(M)}$, thus L(M) is recursive.

 (\Rightarrow) L and \overline{L} accepted by deterministic TMs M_1 and M_2 .

Construct a TM M executes M_1 and M_2 in parallel:

- M accepts when M₁ accepts
- M has non-accepting halting state when M₂ accepts

(\Leftarrow) *L* accepted by deterministic TM *M* that always halts. We show that \overline{L} is recursively enumerable.

From M we construct a Turing machine N as follows:

- Add a fresh state q_f.
- For all $q \in Q \setminus F$ and $a \in \Gamma$: if $\delta(q, a)$ undefined, define $\delta(q, a) = (q_f, a, R)$.
- Make q_f the only final state.

Then $L(N) = \overline{L(M)}$, thus L(M) is recursive.

 (\Rightarrow) L and \overline{L} accepted by deterministic TMs M_1 and M_2 .

Construct a TM M executes M_1 and M_2 in parallel:

M accepts when M₁ accepts

• *M* has non-accepting halting state when M_2 accepts Then $L(M) = L(M_1) = L$, and *M* halts for every input.

Theorem

If L, L_1 and L_2 are recursive, then so are

 $\overline{L} \qquad L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1 \setminus L_2 \qquad L^* \qquad L_1 L_2$

TheoremIf L, L1 and L2 are recursive, then so are \overline{L} $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 \setminus L_2$ L^* L_1L_2

Proof.

TheoremIf L, L1 and L2 are recursive, then so are \overline{L} $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 \setminus L_2$ L^* L_1L_2

Proof. Let L, \overline{L} , L_1 , $\overline{L_1}$, L_2 and $\overline{L_2}$ be recursively enumerable (r.e.). \overline{L} : \overline{L} and $\overline{\overline{L}} = L$ are r.e.

TheoremIf L, L_1 and L_2 are recursive, then so are \overline{L} $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 \setminus L_2$ L^* $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 \setminus L_2$ L^* $L_1 L_2$

Proof.

Let $L, \overline{L}, L_1, \overline{L_1}, L_2$ and $\overline{L_2}$ be recursively enumerable (r.e.).

$$\blacksquare L: L \text{ and } L = L \text{ are r.e.}$$

• $L_1 \cup L_2$: $L_1 \cup L_2$ and $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$ are r.e.

TheoremIf L, L_1 and L_2 are recursive, then so are \overline{L} $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 \setminus L_2$ L^* $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 \setminus L_2$ L^* $L_1 L_2$

Proof.

I:
$$\overline{L}$$
 and $\overline{\overline{L}} = L$ are r.e.

- $L_1 \cup L_2$: $L_1 \cup L_2$ and $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$ are r.e.
- $L_1 \cap L_2$: $L_1 \cap L_2$ and $\overline{L_1 \cap L_2} = \overline{L_1} \cup \overline{L_2}$ are r.e.

Theorem

If L, L_1 and L_2 are recursive, then so are

 $\overline{L} \qquad L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1 \setminus L_2 \qquad L^* \qquad L_1 L_2$

Proof.

I:
$$\overline{L}$$
 and $\overline{\overline{L}} = L$ are r.e.

- $L_1 \cup L_2$: $L_1 \cup L_2$ and $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$ are r.e.
- $L_1 \cap L_2$: $L_1 \cap L_2$ and $\overline{L_1 \cap L_2} = \overline{L_1} \cup \overline{L_2}$ are r.e.
- $\blacksquare L_1 \setminus L_2 = L_1 \cap \overline{L_2}$

Theorem

If L, L_1 and L_2 are recursive, then so are

 $\overline{L} \qquad L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1 \setminus L_2 \qquad L^* \qquad L_1 L_2$

Proof.

- **I**: \overline{L} and $\overline{\overline{L}} = L$ are r.e.
- $L_1 \cup L_2$: $L_1 \cup L_2$ and $\overline{L_1 \cup L_2} = \overline{L_1} \cap \overline{L_2}$ are r.e.
- $L_1 \cap L_2$: $L_1 \cap L_2$ and $\overline{L_1 \cap L_2} = \overline{L_1} \cup \overline{L_2}$ are r.e.
- $\blacksquare L_1 \setminus L_2 = L_1 \cap \overline{L_2}$
- L_1L_2 , L^* : same proof as for recursively enumerable languages. Observe that the constructed Turing machine halts on all inputs if M_1 , M_2 and M do.