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Recursively Enumerable Languages

A language L is recursively enumerable if L is accepted by a
(deterministic) Turing machine.

Equivalently, a language L is recursively enumerable if there
exists a Turing machine enumerates all words in L.

Intuitively, the Turing machine writes on the tape
#wiHwottwg# - -
such that L ={wy, wo, ws, ...}

If L is infinite, this computation never stops! Every word from L
will eventually be written on the tape.

Then wy, wo, ... is called a recursive enumeration of L.
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Turing Machines are Recursively Enumerable

Theorem
Turing machines are recursively enumerable.

Proof.
® A Turing machine can be represented as a word.

m A parser can check whether a word represents a TM.
(If so, accept.)

L]
Thus, there is a recursive enumeration of all Turing machines:
My, Mo, ...

Formally, we enumerate words describing Turing machines. But
the does not matter since we have a universal Turing machine
that can execute these descriptions.



Properties of Recursively Enumerable Languages



Union and Intersection

Theorem
If L1 and L, are recursively enumerable languages, then so are

LiULs LiNLs



Union and Intersection

Theorem
If L1 and L, are recursively enumerable languages, then so are

LyU L LyNnLy

Let M; and M, be Turing machines such that
L(My) = L; L(Mz) = L



Union and Intersection

Theorem
If L1 and L, are recursively enumerable languages, then so are

LiULs LiNLs

Let M; and M, be Turing machines such that
L(My) = L; L(Mz) = L

Create a Turing machine M that runs M; and M, in parallel.
(Alternating simulate one step of My and one step of Ms.)



Union and Intersection

Theorem
If L1 and L, are recursively enumerable languages, then so are

LiULs LiNLs

Let M; and M, be Turing machines such that

L(My) = L; L(Mz) = L
Create a Turing machine M that runs M; and M, in parallel.
(Alternating simulate one step of My and one step of Ms.)

m For L(M) = Ly U Ly,
let M accept as soon as M; accepts or M, accepts.



Union and Intersection

Theorem
If L1 and L, are recursively enumerable languages, then so are

LiULs LiNLs

Let M; and M, be Turing machines such that
L(My) = L; L(Mp) = Lo
Create a Turing machine M that runs M; and M, in parallel.
(Alternating simulate one step of My and one step of Ms.)
® For L(M) =Ly ULy,
let M accept as soon as M; accepts or M, accepts.

m For L(M) = Ly N Ly,
let M accept as soon as both M; and M, accept.



Union and Intersection

Theorem
If L1 and L, are recursively enumerable languages, then so are

LiULs LiNLs

Let M; and M, be Turing machines such that
L(My) = L; L(Mp) = Lo
Create a Turing machine M that runs M; and M, in parallel.
(Alternating simulate one step of M; and one step of Ms.)
® For L(M) =Ly ULy,
let M accept as soon as M; accepts or M, accepts.

m For L(M) = Ly N Ly,
let M accept as soon as both M; and M, accept.

What about L \ Lo?
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Let My, Mo, M3, ... be a recursive enumeration of all TMs.
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Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let My, Mo, M3, ... be a recursive enumeration of all TMs.
Define the language L by
L={a|d eLM),i>1}
Then L is recursively enumerable.

If L was recursively enumerable: L = L(Mjy) for some k > 1.
Then

el — declM) = &elL

Contradiction. Hence L is not recursively enumerable. O

L1 \ Ly is not always recursively enumerable since L = Z* \ L.
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Concatenation

Theorem
If L1 and L, are recursively enumerable languages, then so is

LiLy

Let M; and M, be Turing machines such that

L(My) = L4 L(M;) = Lo
A split of a word w is a pair (wq, wo) such that w = wy we.
We call the split good if My accepts wy and M, accepts ws.

Create a Turing machine N that
® computes all splits of the input word w
m checks all splits in parallel whether they are good

B accepts the input w as soon as a good split is found
Then L(N) = L Ly.
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Kleene Start

Theorem
If L is a recursively enumerable language, then so is

L*

Let M be a Turing machine such that L(M) = L.

A partitioning of a word w = A are non-empty words
(wq,...,wp) forsome n < |w|suchthat w = wyws - - - wj.

The partitioning is good if M accepts all words wy, ..., wy.

Create a Turing machine N that
®m computes all partitionings of the input word w # A

m checks all partitionings in parallel whether they are good

B accepts the input w as soon as a good partitioning is found
Then L(N) = L*.
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Recursive Languages

A language L is recursive if
® [ is recursively enumerable, and
= [ is recursively enumerable.

Not every recursively enumerable language is recursive!

(See the a few slides back.)

Theorem
A language L is recursive <= L is accepted by a deterministic
TM M that reaches for every input a halting state.

Proof on the next slide.
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Proof

(&) L accepted by deterministic TM M that always halts.
We show that L is recursively enumerable.
From M we construct a Turing machine N as follows:

® Add a fresh state gy.

mForallge Q\FandacT:
if 5(g, a) undefined, define §(q, a) = (gr, a, R).

= Make g the only final state.
Then L(N) = L(M), thus L(M) is recursive.

(=) L and L accepted by deterministic TMs M and M.
Construct a TM M executes M; and M, in parallel:

®m M accepts when M; accepts

®m M has non-accepting halting state when M, accepts
Then L(M) = L(My) = L, and M halts for every input.
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Properties of Recursive Languages

Theorem
If L, Ly and L, are recursive, then so are

L LUl LinL Ly \ Lo L LiLo

Proof.
Let L, L, Ly, Ly, Ly and L, be recursively enumerable (r.e.).
L:Land L= Larere.

LyUly: LyUlpand L1 ULy, = L1 N Ly arer.e.

Lynly: LyNnlyand L1 N Ly, =Ly ULy arer.e.
Li\L=LinL



Properties of Recursive Languages

Theorem
If L, Ly and L, are recursive, then so are

L LUl LinL Li\ L L LiLo

Proof.
Let L, L, Ly, Ly, Ly and L, be recursively enumerable (r.e.).
m[:LandL=Larere.

m[{Uly: L{Ulpand L[{UL, =L{NLyarer.e.
BNl Linlyand 1Nl =L;ULyarer.e.
m L \L=LinL

m [4L,, L*: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if My, M and M do.



