
Automata Theory ::
Recursively Enumerable Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Recursively Enumerable Languages

A language L is recursively enumerable if L is accepted by a
(deterministic) Turing machine.

Equivalently, a language L is recursively enumerable if there
exists a Turing machine enumerates all words in L.

Intuitively, the Turing machine writes on the tape

#w1#w2#w3# · · ·

such that L = {w1,w2,w3, . . . }.

If L is infinite, this computation never stops! Every word from L
will eventually be written on the tape.

Then w1,w2, . . . is called a recursive enumeration of L.

Recursively Enumerable Languages

A language L is recursively enumerable if L is accepted by a
(deterministic) Turing machine.

Equivalently, a language L is recursively enumerable if there
exists a Turing machine enumerates all words in L.

Intuitively, the Turing machine writes on the tape

#w1#w2#w3# · · ·

such that L = {w1,w2,w3, . . . }.

If L is infinite, this computation never stops! Every word from L
will eventually be written on the tape.

Then w1,w2, . . . is called a recursive enumeration of L.

Recursively Enumerable Languages

A language L is recursively enumerable if L is accepted by a
(deterministic) Turing machine.

Equivalently, a language L is recursively enumerable if there
exists a Turing machine enumerates all words in L.

Intuitively, the Turing machine writes on the tape

#w1#w2#w3# · · ·

such that L = {w1,w2,w3, . . . }.

If L is infinite, this computation never stops! Every word from L
will eventually be written on the tape.

Then w1,w2, . . . is called a recursive enumeration of L.

Recursively Enumerable Languages

A language L is recursively enumerable if L is accepted by a
(deterministic) Turing machine.

Equivalently, a language L is recursively enumerable if there
exists a Turing machine enumerates all words in L.

Intuitively, the Turing machine writes on the tape

#w1#w2#w3# · · ·

such that L = {w1,w2,w3, . . . }.

If L is infinite, this computation never stops! Every word from L
will eventually be written on the tape.

Then w1,w2, . . . is called a recursive enumeration of L.

Recursively Enumerable Languages

A language L is recursively enumerable if L is accepted by a
(deterministic) Turing machine.

Equivalently, a language L is recursively enumerable if there
exists a Turing machine enumerates all words in L.

Intuitively, the Turing machine writes on the tape

#w1#w2#w3# · · ·

such that L = {w1,w2,w3, . . . }.

If L is infinite, this computation never stops! Every word from L
will eventually be written on the tape.

Then w1,w2, . . . is called a recursive enumeration of L.

Turing Machines are Recursively Enumerable

Theorem
Turing machines are recursively enumerable.

Proof.

A Turing machine can be represented as a word.

A parser can check whether a word represents a TM.
(If so, accept.)

Thus, there is a recursive enumeration of all Turing machines:

M1,M2, . . .

Formally, we enumerate words describing Turing machines. But
the does not matter since we have a universal Turing machine
that can execute these descriptions.

Turing Machines are Recursively Enumerable

Theorem
Turing machines are recursively enumerable.

Proof.

A Turing machine can be represented as a word.

A parser can check whether a word represents a TM.
(If so, accept.)

Thus, there is a recursive enumeration of all Turing machines:

M1,M2, . . .

Formally, we enumerate words describing Turing machines. But
the does not matter since we have a universal Turing machine
that can execute these descriptions.

Turing Machines are Recursively Enumerable

Theorem
Turing machines are recursively enumerable.

Proof.

A Turing machine can be represented as a word.

A parser can check whether a word represents a TM.
(If so, accept.)

Thus, there is a recursive enumeration of all Turing machines:

M1,M2, . . .

Formally, we enumerate words describing Turing machines. But
the does not matter since we have a universal Turing machine
that can execute these descriptions.

Turing Machines are Recursively Enumerable

Theorem
Turing machines are recursively enumerable.

Proof.

A Turing machine can be represented as a word.

A parser can check whether a word represents a TM.
(If so, accept.)

Thus, there is a recursive enumeration of all Turing machines:

M1,M2, . . .

Formally, we enumerate words describing Turing machines. But
the does not matter since we have a universal Turing machine
that can execute these descriptions.

Properties of Recursively Enumerable Languages

Union and Intersection

Theorem
If L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2 L1 ∩ L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

Create a Turing machine M that runs M1 and M2 in parallel.
(Alternating simulate one step of M1 and one step of M2.)

For L(M) = L1 ∪ L2,
let M accept as soon as M1 accepts or M2 accepts.

For L(M) = L1 ∩ L2,
let M accept as soon as both M1 and M2 accept.

What about L1 \ L2?

Union and Intersection

Theorem
If L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2 L1 ∩ L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

Create a Turing machine M that runs M1 and M2 in parallel.
(Alternating simulate one step of M1 and one step of M2.)

For L(M) = L1 ∪ L2,
let M accept as soon as M1 accepts or M2 accepts.

For L(M) = L1 ∩ L2,
let M accept as soon as both M1 and M2 accept.

What about L1 \ L2?

Union and Intersection

Theorem
If L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2 L1 ∩ L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

Create a Turing machine M that runs M1 and M2 in parallel.
(Alternating simulate one step of M1 and one step of M2.)

For L(M) = L1 ∪ L2,
let M accept as soon as M1 accepts or M2 accepts.

For L(M) = L1 ∩ L2,
let M accept as soon as both M1 and M2 accept.

What about L1 \ L2?

Union and Intersection

Theorem
If L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2 L1 ∩ L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

Create a Turing machine M that runs M1 and M2 in parallel.
(Alternating simulate one step of M1 and one step of M2.)

For L(M) = L1 ∪ L2,
let M accept as soon as M1 accepts or M2 accepts.

For L(M) = L1 ∩ L2,
let M accept as soon as both M1 and M2 accept.

What about L1 \ L2?

Union and Intersection

Theorem
If L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2 L1 ∩ L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

Create a Turing machine M that runs M1 and M2 in parallel.
(Alternating simulate one step of M1 and one step of M2.)

For L(M) = L1 ∪ L2,
let M accept as soon as M1 accepts or M2 accepts.

For L(M) = L1 ∩ L2,
let M accept as soon as both M1 and M2 accept.

What about L1 \ L2?

Union and Intersection

Theorem
If L1 and L2 are recursively enumerable languages, then so are

L1 ∪ L2 L1 ∩ L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

Create a Turing machine M that runs M1 and M2 in parallel.
(Alternating simulate one step of M1 and one step of M2.)

For L(M) = L1 ∪ L2,
let M accept as soon as M1 accepts or M2 accepts.

For L(M) = L1 ∩ L2,
let M accept as soon as both M1 and M2 accept.

What about L1 \ L2?

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk)

⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk)

⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk)

⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.

If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk)

⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable

: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk)

⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.

Then

ak ∈ L ⇐⇒ ak ∈ L(Mk)

⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk)

⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk) ⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk) ⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Complement

There exist recursively enumerable languages L, for which the
complement L is not recursively enumerable.

Proof.
Let M1,M2,M3, . . . be a recursive enumeration of all TMs.

Define the language L by

L = {ai | ai ∈ L(Mi), i ≥ 1 }

Then L is recursively enumerable.
If L was recursively enumerable: L = L(Mk) for some k ≥ 1.
Then

ak ∈ L ⇐⇒ ak ∈ L(Mk) ⇐⇒ ak ∈ L

Contradiction. Hence L is not recursively enumerable.

L1 \ L2 is not always recursively enumerable since L = Σ∗ \ L.

Concatenation

Theorem
If L1 and L2 are recursively enumerable languages, then so is

L1L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

A split of a word w is a pair (w1,w2) such that w = w1w2.

We call the split good if M1 accepts w1 and M2 accepts w2.

Create a Turing machine N that
computes all splits of the input word w

checks all splits in parallel whether they are good

accepts the input w as soon as a good split is found
Then L(N) = L1L2.

Concatenation

Theorem
If L1 and L2 are recursively enumerable languages, then so is

L1L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

A split of a word w is a pair (w1,w2) such that w = w1w2.

We call the split good if M1 accepts w1 and M2 accepts w2.

Create a Turing machine N that
computes all splits of the input word w

checks all splits in parallel whether they are good

accepts the input w as soon as a good split is found
Then L(N) = L1L2.

Concatenation

Theorem
If L1 and L2 are recursively enumerable languages, then so is

L1L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

A split of a word w is a pair (w1,w2) such that w = w1w2.

We call the split good if M1 accepts w1 and M2 accepts w2.

Create a Turing machine N that
computes all splits of the input word w

checks all splits in parallel whether they are good

accepts the input w as soon as a good split is found
Then L(N) = L1L2.

Concatenation

Theorem
If L1 and L2 are recursively enumerable languages, then so is

L1L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

A split of a word w is a pair (w1,w2) such that w = w1w2.

We call the split good if M1 accepts w1 and M2 accepts w2.

Create a Turing machine N that
computes all splits of the input word w

checks all splits in parallel whether they are good

accepts the input w as soon as a good split is found
Then L(N) = L1L2.

Concatenation

Theorem
If L1 and L2 are recursively enumerable languages, then so is

L1L2

Let M1 and M2 be Turing machines such that

L(M1) = L1 L(M2) = L2

A split of a word w is a pair (w1,w2) such that w = w1w2.

We call the split good if M1 accepts w1 and M2 accepts w2.

Create a Turing machine N that
computes all splits of the input word w

checks all splits in parallel whether they are good

accepts the input w as soon as a good split is found
Then L(N) = L1L2.

Kleene Start

Theorem
If L is a recursively enumerable language, then so is

L∗

Let M be a Turing machine such that L(M) = L.

A partitioning of a word w 6= λ are non-empty words
(w1, . . . ,wn) for some n ≤ |w | such that w = w1w2 · · ·wn.

The partitioning is good if M accepts all words w1, . . . ,wn.

Create a Turing machine N that
computes all partitionings of the input word w 6= λ

checks all partitionings in parallel whether they are good

accepts the input w as soon as a good partitioning is found
Then L(N) = L∗.

Kleene Start

Theorem
If L is a recursively enumerable language, then so is

L∗

Let M be a Turing machine such that L(M) = L.

A partitioning of a word w 6= λ are non-empty words
(w1, . . . ,wn) for some n ≤ |w | such that w = w1w2 · · ·wn.

The partitioning is good if M accepts all words w1, . . . ,wn.

Create a Turing machine N that
computes all partitionings of the input word w 6= λ

checks all partitionings in parallel whether they are good

accepts the input w as soon as a good partitioning is found
Then L(N) = L∗.

Kleene Start

Theorem
If L is a recursively enumerable language, then so is

L∗

Let M be a Turing machine such that L(M) = L.

A partitioning of a word w 6= λ are non-empty words
(w1, . . . ,wn) for some n ≤ |w | such that w = w1w2 · · ·wn.

The partitioning is good if M accepts all words w1, . . . ,wn.

Create a Turing machine N that
computes all partitionings of the input word w 6= λ

checks all partitionings in parallel whether they are good

accepts the input w as soon as a good partitioning is found
Then L(N) = L∗.

Kleene Start

Theorem
If L is a recursively enumerable language, then so is

L∗

Let M be a Turing machine such that L(M) = L.

A partitioning of a word w 6= λ are non-empty words
(w1, . . . ,wn) for some n ≤ |w | such that w = w1w2 · · ·wn.

The partitioning is good if M accepts all words w1, . . . ,wn.

Create a Turing machine N that
computes all partitionings of the input word w 6= λ

checks all partitionings in parallel whether they are good

accepts the input w as soon as a good partitioning is found
Then L(N) = L∗.

Kleene Start

Theorem
If L is a recursively enumerable language, then so is

L∗

Let M be a Turing machine such that L(M) = L.

A partitioning of a word w 6= λ are non-empty words
(w1, . . . ,wn) for some n ≤ |w | such that w = w1w2 · · ·wn.

The partitioning is good if M accepts all words w1, . . . ,wn.

Create a Turing machine N that
computes all partitionings of the input word w 6= λ

checks all partitionings in parallel whether they are good

accepts the input w as soon as a good partitioning is found
Then L(N) = L∗.

Recursive Languages

Recursive Languages

A language L is recursive if
L is recursively enumerable, and
L is recursively enumerable.

Not every recursively enumerable language is recursive!

(See the a few slides back.)

Theorem
A language L is recursive ⇐⇒ L is accepted by a deterministic
TM M that reaches for every input a halting state.

Proof on the next slide.

Recursive Languages

A language L is recursive if
L is recursively enumerable, and
L is recursively enumerable.

Not every recursively enumerable language is recursive!

(See the a few slides back.)

Theorem
A language L is recursive ⇐⇒ L is accepted by a deterministic
TM M that reaches for every input a halting state.

Proof on the next slide.

Recursive Languages

A language L is recursive if
L is recursively enumerable, and
L is recursively enumerable.

Not every recursively enumerable language is recursive!

(See the a few slides back.)

Theorem
A language L is recursive ⇐⇒ L is accepted by a deterministic
TM M that reaches for every input a halting state.

Proof on the next slide.

Proof

(⇐) L accepted by deterministic TM M that always halts.

We show that L is recursively enumerable.
From M we construct a Turing machine N as follows:

Add a fresh state qf .
For all q ∈ Q \ F and a ∈ Γ :
if δ(q,a) undefined, define δ(q,a) = (qf ,a,R).
Make qf the only final state.

Then L(N) = L(M), thus L(M) is recursive.

(⇒) L and L accepted by deterministic TMs M1 and M2.

Construct a TM M executes M1 and M2 in parallel:
M accepts when M1 accepts

M has non-accepting halting state when M2 accepts
Then L(M) = L(M1) = L, and M halts for every input.

Proof

(⇐) L accepted by deterministic TM M that always halts.
We show that L is recursively enumerable.

From M we construct a Turing machine N as follows:
Add a fresh state qf .
For all q ∈ Q \ F and a ∈ Γ :
if δ(q,a) undefined, define δ(q,a) = (qf ,a,R).
Make qf the only final state.

Then L(N) = L(M), thus L(M) is recursive.

(⇒) L and L accepted by deterministic TMs M1 and M2.

Construct a TM M executes M1 and M2 in parallel:
M accepts when M1 accepts

M has non-accepting halting state when M2 accepts
Then L(M) = L(M1) = L, and M halts for every input.

Proof

(⇐) L accepted by deterministic TM M that always halts.
We show that L is recursively enumerable.
From M we construct a Turing machine N as follows:

Add a fresh state qf .
For all q ∈ Q \ F and a ∈ Γ :
if δ(q,a) undefined, define δ(q,a) = (qf ,a,R).
Make qf the only final state.

Then L(N) = L(M), thus L(M) is recursive.

(⇒) L and L accepted by deterministic TMs M1 and M2.

Construct a TM M executes M1 and M2 in parallel:
M accepts when M1 accepts

M has non-accepting halting state when M2 accepts
Then L(M) = L(M1) = L, and M halts for every input.

Proof

(⇐) L accepted by deterministic TM M that always halts.
We show that L is recursively enumerable.
From M we construct a Turing machine N as follows:

Add a fresh state qf .
For all q ∈ Q \ F and a ∈ Γ :
if δ(q,a) undefined, define δ(q,a) = (qf ,a,R).
Make qf the only final state.

Then L(N) = L(M), thus L(M) is recursive.

(⇒) L and L accepted by deterministic TMs M1 and M2.

Construct a TM M executes M1 and M2 in parallel:
M accepts when M1 accepts

M has non-accepting halting state when M2 accepts
Then L(M) = L(M1) = L, and M halts for every input.

Proof

(⇐) L accepted by deterministic TM M that always halts.
We show that L is recursively enumerable.
From M we construct a Turing machine N as follows:

Add a fresh state qf .
For all q ∈ Q \ F and a ∈ Γ :
if δ(q,a) undefined, define δ(q,a) = (qf ,a,R).
Make qf the only final state.

Then L(N) = L(M), thus L(M) is recursive.

(⇒) L and L accepted by deterministic TMs M1 and M2.

Construct a TM M executes M1 and M2 in parallel:
M accepts when M1 accepts

M has non-accepting halting state when M2 accepts
Then L(M) = L(M1) = L, and M halts for every input.

Proof

(⇐) L accepted by deterministic TM M that always halts.
We show that L is recursively enumerable.
From M we construct a Turing machine N as follows:

Add a fresh state qf .
For all q ∈ Q \ F and a ∈ Γ :
if δ(q,a) undefined, define δ(q,a) = (qf ,a,R).
Make qf the only final state.

Then L(N) = L(M), thus L(M) is recursive.

(⇒) L and L accepted by deterministic TMs M1 and M2.

Construct a TM M executes M1 and M2 in parallel:
M accepts when M1 accepts

M has non-accepting halting state when M2 accepts

Then L(M) = L(M1) = L, and M halts for every input.

Proof

(⇐) L accepted by deterministic TM M that always halts.
We show that L is recursively enumerable.
From M we construct a Turing machine N as follows:

Add a fresh state qf .
For all q ∈ Q \ F and a ∈ Γ :
if δ(q,a) undefined, define δ(q,a) = (qf ,a,R).
Make qf the only final state.

Then L(N) = L(M), thus L(M) is recursive.

(⇒) L and L accepted by deterministic TMs M1 and M2.

Construct a TM M executes M1 and M2 in parallel:
M accepts when M1 accepts

M has non-accepting halting state when M2 accepts
Then L(M) = L(M1) = L, and M halts for every input.

Properties of Recursive Languages

Theorem
If L, L1 and L2 are recursive, then so are

L L1 ∪ L2 L1 ∩ L2 L1 \ L2 L∗ L1L2

Proof.
Let L, L, L1, L1, L2 and L2 be recursively enumerable (r.e.).

L: L and L = L are r.e.

L1 ∪ L2: L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are r.e.

L1 ∩ L2: L1 ∩ L2 and L1 ∩ L2 = L1 ∪ L2 are r.e.

L1 \ L2 = L1 ∩ L2

L1L2, L∗: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if M1, M2 and M do.

Properties of Recursive Languages

Theorem
If L, L1 and L2 are recursive, then so are

L L1 ∪ L2 L1 ∩ L2 L1 \ L2 L∗ L1L2

Proof.
Let L, L, L1, L1, L2 and L2 be recursively enumerable (r.e.).

L: L and L = L are r.e.

L1 ∪ L2: L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are r.e.

L1 ∩ L2: L1 ∩ L2 and L1 ∩ L2 = L1 ∪ L2 are r.e.

L1 \ L2 = L1 ∩ L2

L1L2, L∗: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if M1, M2 and M do.

Properties of Recursive Languages

Theorem
If L, L1 and L2 are recursive, then so are

L L1 ∪ L2 L1 ∩ L2 L1 \ L2 L∗ L1L2

Proof.
Let L, L, L1, L1, L2 and L2 be recursively enumerable (r.e.).

L: L and L = L are r.e.

L1 ∪ L2: L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are r.e.

L1 ∩ L2: L1 ∩ L2 and L1 ∩ L2 = L1 ∪ L2 are r.e.

L1 \ L2 = L1 ∩ L2

L1L2, L∗: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if M1, M2 and M do.

Properties of Recursive Languages

Theorem
If L, L1 and L2 are recursive, then so are

L L1 ∪ L2 L1 ∩ L2 L1 \ L2 L∗ L1L2

Proof.
Let L, L, L1, L1, L2 and L2 be recursively enumerable (r.e.).

L: L and L = L are r.e.

L1 ∪ L2: L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are r.e.

L1 ∩ L2: L1 ∩ L2 and L1 ∩ L2 = L1 ∪ L2 are r.e.

L1 \ L2 = L1 ∩ L2

L1L2, L∗: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if M1, M2 and M do.

Properties of Recursive Languages

Theorem
If L, L1 and L2 are recursive, then so are

L L1 ∪ L2 L1 ∩ L2 L1 \ L2 L∗ L1L2

Proof.
Let L, L, L1, L1, L2 and L2 be recursively enumerable (r.e.).

L: L and L = L are r.e.

L1 ∪ L2: L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are r.e.

L1 ∩ L2: L1 ∩ L2 and L1 ∩ L2 = L1 ∪ L2 are r.e.

L1 \ L2 = L1 ∩ L2

L1L2, L∗: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if M1, M2 and M do.

Properties of Recursive Languages

Theorem
If L, L1 and L2 are recursive, then so are

L L1 ∪ L2 L1 ∩ L2 L1 \ L2 L∗ L1L2

Proof.
Let L, L, L1, L1, L2 and L2 be recursively enumerable (r.e.).

L: L and L = L are r.e.

L1 ∪ L2: L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are r.e.

L1 ∩ L2: L1 ∩ L2 and L1 ∩ L2 = L1 ∪ L2 are r.e.

L1 \ L2 = L1 ∩ L2

L1L2, L∗: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if M1, M2 and M do.

Properties of Recursive Languages

Theorem
If L, L1 and L2 are recursive, then so are

L L1 ∪ L2 L1 ∩ L2 L1 \ L2 L∗ L1L2

Proof.
Let L, L, L1, L1, L2 and L2 be recursively enumerable (r.e.).

L: L and L = L are r.e.

L1 ∪ L2: L1 ∪ L2 and L1 ∪ L2 = L1 ∩ L2 are r.e.

L1 ∩ L2: L1 ∩ L2 and L1 ∩ L2 = L1 ∪ L2 are r.e.

L1 \ L2 = L1 ∩ L2

L1L2, L∗: same proof as for recursively enumerable
languages. Observe that the constructed Turing machine
halts on all inputs if M1, M2 and M do.

