Automata Theory :: Turing Machines

Jörg Endrullis

Vrije Universiteit Amsterdam

Turing Machines

Turing Machines

Turing machines can read and write the input word.
Input is written on a tape on which a read-write-head works.

In each step:
\square the read-write-head reads a symbol from the tape,

- overwrites the symbol, and
- moves one place to the left or right.

The tape is two-sided infinite: unlimited memory!

Turing Machines

We introduce a blank symbol \square. The initial tape content is $\cdots \cdot \square \square \square \square$ input word $\square \square \square \square .$.
There is a finite set of states Q and a finite tape alphabet Γ.
The transition function δ has the form

$$
\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}
$$

Here δ is a partial function: $\delta(q, a)$ may be undefined.
$\delta(q, a)=\left(q^{\prime}, b, X\right)$ means: if

- the machine is in state q, and
- the head reads a from the tape
then
- then a is overwritten by b,
- the head moves 1 position left if $X=L$, right if $X=R$, and
- the machine switches to state q^{\prime}.

Turing Machines

A deterministic Turing machine, short TM, is a 7-tuple

$$
\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)
$$

where

- Q is a finite set of states,
$\square \Sigma \subseteq \Gamma \backslash\{\square\}$ a finite input alphabet,
- Γ a finite tape alphabet,

■ $\delta: Q \times \Gamma \rightarrow Q \times \Gamma \times\{L, R\}$ a partial transition function,

- q_{0} the starting state,
- $\square \in \Gamma$ the blank symbol,

■ $F \subseteq Q$ a set of final (accepting) states.
Assumption: $\delta(q, a)$ is undefined for every $q \in F$ and $a \in \Gamma$.
So the computation stops when reaching a final state.

Turing Machine Configuration

A configuration (q, c) of a Turing machine consists of

- a state $q \in Q$, and
- a function $c: \mathbb{Z} \rightarrow \Gamma$, the tape content.

The non-blank positions $\{z \in \mathbb{Z} \mid c(z) \neq \square\}$ are finite.
The head of the machine stands on $c(0)$.

Let $n, m \in \mathbb{N}$ (exist for every configuration) such that

$$
\forall i<-n . c(i)=\square \quad \text { and } \quad \forall i>m . c(i)=\square
$$

Then we denote the configuration by the finite word

$$
c(-n) c(-n+1) \cdots c(-1) q c(0) c(1) \cdots c(m)
$$

Turing Machine Configuration

So configurations are denoted by words from $\Gamma^{*} \times Q \times \Gamma^{*}$.
For instance, the configuration

can be denoted by

$$
e d q a b b
$$

The words

$$
e d q a b b \square \quad \approx \quad \square e d q a b b \quad \approx \quad \square \square e d q a b b \square \ldots
$$

denote the same configuration.

We write $w \approx v$ if w and v denote the same configuration.

Turing Machine Computations

The computation steps \vdash on configurations are defined by:

$$
\begin{aligned}
v q a w \vdash v b q^{\prime} w & \text { if } \delta(q, a)=\left(q^{\prime}, b, R\right) \\
v c q a w \vdash v q^{\prime} c b w & \text { if } \delta(q, a)=\left(q^{\prime}, b, L\right)
\end{aligned}
$$

where $v, w \in \Gamma^{*}, a, c \in \Gamma$ and $q \in Q$.
We write \vdash^{*} for a computation of zero or more steps.
Assume that (δ is undefined in all other case)

$$
\delta\left(q_{0}, a\right)=\left(q_{0}, a, R\right) \quad \delta\left(q_{1}, a\right)=\left(q_{1}, b, L\right) \quad \delta\left(q_{0}, \square\right)=\left(q_{1}, c, L\right)
$$

Then we have steps:

$$
q_{0} a a \vdash a q_{0} a \vdash a a q_{0} \vdash a q_{1} a c \vdash q_{1} a b c \vdash q_{1} \square b b c
$$

Here we use $a a q_{0} \approx a a q_{0} \square$ and $q_{1} a b c \approx \square q_{1} a b c$.

A configuration vqaw is a halting state if $\delta(q, a)$ is undefined.

Drawing Turing Machines

The transition graph for a TMs contains

$$
\text { an arrow } \quad q \xrightarrow{a / b X} q^{\prime} \quad \text { whenever } \quad \delta(q, a)=\left(q^{\prime}, b, X\right)
$$

The Turing machine $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ with $\Sigma=\{a, b\}$, $\Gamma=\{a, b, \square\}, Q=\left\{q_{0}, q_{1}, q_{2}\right\}, F=\left\{q_{2}\right\}$ and

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=\left(q_{1}, b, R\right) & \delta\left(q_{1}, a\right)=\left(q_{0}, b, R\right) \\
\delta\left(q_{0}, b\right)=\left(q_{0}, a, R\right) & \delta\left(q_{1}, b\right)=\left(q_{1}, a, R\right) \\
& \delta\left(q_{1}, \square\right)=\left(q_{2}, \square, L\right)
\end{array}
$$

can be visualised as

Turing Machines and Languages

The language $L(M)$ accepted by $\mathrm{TM} M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, \square, F\right)$ is

$$
\left\{w \in \Sigma^{*} \mid q_{0} w \vdash^{*} u q v \text { for some } q \in F, u, v \in \Gamma^{*}\right\}
$$

If $w \notin L(M)$ this can have two causes:

- the execution halts in a configuration vqw with $q \notin F$, or
- the execution is infinite (never halts).

What is $L(M)$?
The set of words over $\Sigma=\{a, b\}$ with an odd number of a 's.

A language is recursively enumerable if it is accepted by a TM.

Example

We construct a TM M with $L(M)=\left\{a^{n} b^{n} c^{n} \mid n \geq 1\right\}$.
Idea: stepwise replace one a by 0 , one b by 1 and one c by 2 .

- $\Sigma=\{a, b, c\}$ and $\Gamma=\{a, b, c, 0,1,2, \square\}$
- q_{0} : Read a, replace by 0 , move right and switch to q_{1}.
- q_{1} : Keep moving right until we read b.

Replace b by 1 , move right and switch to q_{2}.

- q_{2} : Keep moving right until we read c.

Replace c by 2, move left and switch to q_{3}.

- q_{3} : Keep moving left until we read 0.

Move right and switch back to q_{0}.

- If we read 1 in q_{0}, switch to q_{4}.
- q_{4} : Keep moving right to check whether there are a's, b's or c's left. If not, then go to final state q_{5}.

Example

$q_{0} a a b b c c$	$q_{0} a a b b b c c$
$\vdash 0 q_{1} a b b c c$	$\vdash^{+} 0 q_{0} a 1 b b 2 c$
$\vdash 0 a q_{1} b b c c$	$\vdash^{+} 00 q_{0} 11 b 22$
$\vdash 0 a 1 q_{2} b c c$	$\vdash 001 q_{4} 1 b 22$
$\vdash 0 a 1 b q_{2} c c$	$\vdash 0011 q_{4} b 22$
$\vdash 0 a 1 q_{3} b 2 c$	
$\vdash 0 a q_{3} 1 b 2 c$	
$\vdash 0 q_{3} a 1 b 2 c$	
$\vdash q_{3} 0 a 1 b 2 c$	
$\vdash 0 q_{0} a 1 b 2 c$	
$\vdash^{*} 00 q_{0} 1122$	
$\vdash 001 q_{4} 122$	
$\vdash^{*} 001122 q_{4}$	
$\vdash 00112 q_{5} 2$	

Exercise

Construct a Turing machine accepting all words of odd length over the alphabet $\Sigma=\{a, b\}$.

Multiple labels on an arrow are short for multiple transitions.

Extensions of Turing Machines

Extensions of Turing Machines

Extensions of TMs such as

- multiple tapes, or
- nondeterminism
do not give extra expressive power.

Multiple tapes can be simulated using a single tape with polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function

$$
\delta: Q \times \Gamma \rightarrow 2^{Q \times \Gamma \times\{L, R\}}
$$

A nondeterministic TM can be simulated by deterministic TM using breadth-first search (all computations in parallel).
The overhead in time complexity is believed to be an exponential factor.

Church-Turing Thesis

Church-Turing Thesis

Church-Turing thesis: Every computation of a computer can be simulated by a deterministic Turing machine.

This thesis has stood the test of time.

Also computations of quantum computers can be simulated by a Turing machines.

Quantum computers can do certain computations faster than classical computers, but they do not change the limits of computability.

Alonzo Church \& Alan Turing

Two of the founders of the theory of computability.
Alonzo Church (1903-1995) is inventor of the λ-calculus.
Alan Turing (1912-1954)

- introduced the Turing machine,
- invented the Turing test,
- key role in cracking the German Enigma machine.

Both proved undecidability of validity in predicate logic.

Not all Languages are Recursively Enumerable

Not all Languages are Recursively Enumerable

A set A is countable if there is a surjective function $f: \mathbb{N} \rightarrow A$.
There are countably many TMs over an input alphabet Σ.

There are uncountable many languages over Σ.

Proof

Let $a \in \Sigma$.
Assume $L_{0}, L_{1}, L_{2}, \ldots$ is enumeration of all languages over $\{a\}$.
Define a language L as follows: for every $i \geq 0$.

$$
a^{i} \in L \Longleftrightarrow a^{i} \notin L_{i}
$$

Then for every $i \geq 0$, we have $L \neq L_{i}$.
Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Universal Turing Machine

Universal Turing Machine

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.
A universal TM gets as input

- a Turing machine M (described as a word w)
- an input word u
and then executes (simulates) M on u.
The input w and u can be written on the tape as $w \# u$.

Theorem

There exists a universal Turing machine.

