Automata Theory :: Turing Machines

Jörg Endrullis

Vrije Universiteit Amsterdam

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

In each step:

- the read-write-head reads a symbol from the tape,
- overwrites the symbol, and
- moves one place to the left or right.

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

In each step:

- the read-write-head reads a symbol from the tape,
- overwrites the symbol, and
- moves one place to the left or right.

The tape is two-sided infinite: unlimited memory!

We introduce a **blank symbol** \Box . The initial tape content is $\dots \Box \Box \Box \Box$ input word $\Box \Box \Box \Box \dots$

There is a finite set of states Q and a finite tape alphabet Γ .

We introduce a **blank symbol** \Box . The initial tape content is $\dots \Box \Box \Box \Box$ input word $\Box \Box \Box \Box \dots$

There is a finite set of states Q and a finite tape alphabet Γ .

The transition function $\boldsymbol{\delta}$ has the form

 $\delta: \boldsymbol{Q} \times \boldsymbol{\Gamma} \to \boldsymbol{Q} \times \boldsymbol{\Gamma} \times \{\boldsymbol{\textit{L}}, \boldsymbol{\textit{R}}\}$

Here δ is a **partial function**: $\delta(q, a)$ may be undefined.

We introduce a **blank symbol** \Box . The initial tape content is $\dots \Box \Box \Box \Box$ input word $\Box \Box \Box \Box \dots$

There is a finite set of states Q and a finite tape alphabet Γ .

The transition function δ has the form

 $\delta: \boldsymbol{Q} \times \boldsymbol{\Gamma} \to \boldsymbol{Q} \times \boldsymbol{\Gamma} \times \{\boldsymbol{\textit{L}}, \boldsymbol{\textit{R}}\}$

Here δ is a **partial function**: $\delta(q, a)$ may be undefined.

 $\delta(q, a) = (q', b, X)$ means: if

- the machine is in state q, and
- the head reads a from the tape

then

- then a is overwritten by b,
- the head moves 1 position left if X = L, right if X = R, and
- the machine switches to state q'.

A deterministic Turing machine, short TM, is a 7-tuple

 $(Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

where

- Q is a finite set of states,
- $\Sigma \subseteq \Gamma \setminus \{\Box\}$ a finite input alphabet,
- Γ a finite tape alphabet,
- $\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{L, R\}$ a partial transition function,
- q₀ the starting state,
- $\Box \in \Gamma$ the blank symbol,
- $F \subseteq Q$ a set of final (accepting) states.

A deterministic Turing machine, short TM, is a 7-tuple

 $(Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$

where

- Q is a finite set of states,
- $\Sigma \subseteq \Gamma \setminus \{\Box\}$ a finite input alphabet,
- Γ a finite tape alphabet,
- $\delta: \mathbf{Q} \times \Gamma \to \mathbf{Q} \times \Gamma \times \{L, R\}$ a partial transition function,
- q₀ the starting state,
- $\Box \in \Gamma$ the blank symbol,
- $F \subseteq Q$ a set of final (accepting) states.

Assumption: $\delta(q, a)$ is undefined for every $q \in F$ and $a \in \Gamma$.

So the computation stops when reaching a final state.

A configuration (q, c) of a Turing machine consists of

• a state $q \in Q$, and

• a function $c : \mathbb{Z} \to \Gamma$, the **tape content**.

The non-blank positions $\{z \in \mathbb{Z} \mid c(z) \neq \Box\}$ are finite.

The head of the machine stands on c(0).

A configuration (q, c) of a Turing machine consists of

• a state $q \in Q$, and

• a function $c : \mathbb{Z} \to \Gamma$, the **tape content**.

The non-blank positions $\{z \in \mathbb{Z} \mid c(z) \neq \Box\}$ are finite.

The head of the machine stands on c(0).

Let $n, m \in \mathbb{N}$ (exist for every configuration) such that $\forall i < -n. c(i) = \Box$ and $\forall i > m. c(i) = \Box$ Then we **denote the configuration by the finite word** $c(-n)c(-n+1)\cdots c(-1) q c(0)c(1)\cdots c(m)$

So configurations are denoted by words from $\Gamma^* \times Q \times \Gamma^*$.

can be denoted by

ed q abb

So configurations are denoted by words from $\Gamma^* \times Q \times \Gamma^*$.

So configurations are denoted by words from $\Gamma^* \times Q \times \Gamma^*$.

We write $w \approx v$ if w and v denote the same configuration.

The **computation steps** \vdash on configurations are defined by: $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$ where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

 $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$

Then we have steps:

 q_0aa

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

 $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$

Then we have steps:

 $q_0aa \vdash aq_0a$

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

 $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$

Then we have steps:

 $q_0aa \vdash aq_0a \vdash aaq_0$

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

 $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$

Then we have steps:

 $q_0aa \vdash aq_0a \vdash aaq_0$ Here we use $aaq_0 \approx aaq_0$

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

 $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$

Then we have steps:

 $q_0aa \vdash aq_0a \vdash aaq_0 \vdash aq_1ac$

Here we use $aaq_0 \approx aaq_0 \square$

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case) $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$

Then we have steps:

 $q_0aa \vdash aq_0a \vdash aaq_0 \vdash aq_1ac \vdash q_1abc$

Here we use $aaq_0 \approx aaq_0 \square$

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case) $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$ Then we have steps:

 $q_0aa \vdash aq_0a \vdash aaq_0 \vdash aq_1ac \vdash q_1abc$ Here we use $aaq_0 \approx aaq_0\Box$ and $q_1abc \approx \Box q_1abc$.

The **computation steps** \vdash on configurations are defined by:

 $vqaw \vdash vbq'w$ if $\delta(q, a) = (q', b, R)$ $vcqaw \vdash vq'cbw$ if $\delta(q, a) = (q', b, L)$

where $v, w \in \Gamma^*$, $a, c \in \Gamma$ and $q \in Q$.

We write \vdash^* for a computation of zero or more steps.

Assume that (δ is undefined in all other case) $\delta(q_0, a) = (q_0, a, R) \quad \delta(q_1, a) = (q_1, b, L) \quad \delta(q_0, \Box) = (q_1, c, L)$ Then we have steps:

 $q_0 aa \vdash aq_0 a \vdash aaq_0 \vdash aq_1 ac \vdash q_1 abc \vdash q_1 \Box bbc$ Here we use $aaq_0 \approx aaq_0 \Box$ and $q_1 abc \approx \Box q_1 abc$.

A configuration *vqaw* is a **halting state** if $\delta(q, a)$ is undefined.

Drawing Turing Machines

The transition graph for a TMs contains an arrow $q \xrightarrow{a/b X} q'$ whenever $\delta(q, a) = (q', b, X)$

The Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ with $\Sigma = \{a, b\}, \Gamma = \{a, b, \Box\}, Q = \{q_0, q_1, q_2\}, F = \{q_2\}$ and

$\delta(q_0, a) = (q_1, b, R)$	$\delta(q_1, a) = (q_0, b, R)$
$\delta(q_0, b) = (q_0, a, R)$	$\delta(\boldsymbol{q}_1,\boldsymbol{b})=(\boldsymbol{q}_1,\boldsymbol{a},\boldsymbol{R})$
	$\delta(q_1, \Box) = (q_2, \Box, L)$

can be visualised as

The **language** L(M) accepted by TM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ is $\{ w \in \Sigma^* \mid q_0 w \vdash^* uqv \text{ for some } q \in F, u, v \in \Gamma^* \}$

The **language** L(M) accepted by TM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ is $\{ w \in \Sigma^* \mid q_0 w \vdash^* uqv \text{ for some } q \in F, u, v \in \Gamma^* \}$

If $w \notin L(M)$ this can have two causes:

- the execution halts in a configuration vqw with $q \notin F$, or
- the execution is infinite (never halts).

The **language** L(M) accepted by TM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ is $\{ w \in \Sigma^* \mid q_0 w \vdash^* uqv \text{ for some } q \in F, u, v \in \Gamma^* \}$

If $w \notin L(M)$ this can have two causes:

- the execution halts in a configuration vqw with $q \notin F$, or
- the execution is infinite (never halts).

The **language** L(M) accepted by TM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ is $\{ w \in \Sigma^* \mid q_0 w \vdash^* uqv \text{ for some } q \in F, u, v \in \Gamma^* \}$

If $w \notin L(M)$ this can have two causes:

- the execution halts in a configuration vqw with $q \notin F$, or
- the execution is infinite (never halts).

What is L(M)?

The set of words over $\Sigma = \{a, b\}$ with an odd number of *a*'s.

The **language** L(M) accepted by TM $M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$ is $\{ w \in \Sigma^* \mid q_0 w \vdash^* uqv \text{ for some } q \in F, u, v \in \Gamma^* \}$

If $w \notin L(M)$ this can have two causes:

- the execution halts in a configuration vqw with $q \notin F$, or
- the execution is infinite (never halts).

A language is **recursively enumerable** if it is accepted by a TM.

We construct a TM *M* with $L(M) = \{ a^n b^n c^n \mid n \ge 1 \}$.

We construct a TM *M* with $L(M) = \{ a^n b^n c^n \mid n \ge 1 \}$.

Idea: stepwise replace one *a* by 0, one *b* by 1 and one *c* by 2.

We construct a TM *M* with $L(M) = \{ a^n b^n c^n \mid n \ge 1 \}$.

Idea: stepwise replace one *a* by 0, one *b* by 1 and one *c* by 2.

- $\Sigma = \{ a, b, c \}$ and $\Gamma = \{ a, b, c, 0, 1, 2, \Box \}$
- q_0 : Read *a*, replace by 0, move right and switch to q_1 .
- q₁: Keep moving right until we read b.
 Replace b by 1, move right and switch to q₂.
- *q*₂: Keep moving right until we read *c*.
 Replace *c* by 2, move left and switch to *q*₃.
- q₃: Keep moving left until we read 0.
 Move right and switch back to q₀.
- If we read 1 in q_0 , switch to q_4 .
- q₄: Keep moving right to check whether there are a's, b's or c's left. If not, then go to final state q₅.

q₃

*q*₀*aabbcc*

<mark>q₀</mark>aabbcc ⊢0q₁abbcc

 q_0 aabbcc $\vdash 0q_1$ abbcc $\vdash 0aq_1$ bbcc

 q_0 aabbcc $\vdash 0q_1$ abbcc $\vdash 0aq_1$ bbcc $\vdash 0a1q_2$ bcc

*q*₀*aabbcc* ⊢0*q*₁*abbcc* ⊢0*aq*₁*bbcc* ⊢0*a*1*q*₂*bcc* ⊢0*a*1*bq*₂*cc*

 $q_0aabbcc$ $\vdash 0q_1abbcc$ $\vdash 0aq_1bbcc$ $\vdash 0a1q_2bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$

 $q_0aabbcc$ $\vdash 0q_1abbcc$ $\vdash 0aq_1bbcc$ $\vdash 0a1q_2bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$

 $q_0aabbcc$ $\vdash 0q_1abbcc$ $\vdash 0aq_1bbcc$ $\vdash 0a1q_2bcc$ $\vdash 0a1q_2bcc$ $\vdash 0a1q_2bcc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0 q_0 a 1 b 2 c$

*q*₀aabbcc $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ ⊢0*q*0*a*1*b*2*c* ⊢*00*q*01122

*q*₀aabbcc $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0$ $q_0 a 1 b 2 c$ ⊢*00*q*01122 ⊢001*q*₄122

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0$ $q_0 a 1 b 2 c$ ⊢*00*q*01122 ⊢001*q*₄122 ⊢*001122*q*₄

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_2bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0$ $q_0 a 1 b 2 c$ ⊢*00*q*01122 ⊢001*q*₄122 ⊢*001122*q*₄ ⊢00112*q*₅2

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0$ $q_0 a 1 b 2 c$ ⊢*00*q*01122 ⊢001*q*₄122 ⊢*001122*q*₄ ⊢00112*q*₅2

*q*₀*aabbbcc*

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_2cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0$ $q_0 a 1 b 2 c$ ⊢*00*q*01122 ⊢001*q*₄122 ⊢*001122*q*₄ ⊢00112*q*₅2 <mark>q₀</mark>aabbbcc ⊢⁺0q₀a1bb2c

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_{2}cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0$ $q_0 a 1 b 2 c$ ⊢*00*q*01122 ⊢001*q*₄122 ⊢*001122*q*₄ ⊢00112*q*₅2 q_0 aabbbcc $\vdash^+ 0 q_0 a1 bb2c$ $\vdash^+ 00 q_0 11 b22$

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_{2}cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ *⊢***q**₃0*a*1*b*2*c* $\vdash 0q_0a1b2c$ ⊢*00*q*01122 ⊢001*q*₄122 ⊢*001122*q*₄ ⊢00112*q*₅2

 $q_0 aabbbcc$ $⊢^+ 0q_0 a1bb2c$ $⊢^+ 00q_0 11b22$ $⊢ 001q_4 1b22$

*q*₀*aabbcc* $\vdash 0q_1 abbcc$ ⊢0*a***q**1*bbcc* $\vdash 0a1q_{2}bcc$ $\vdash 0a1bq_{2}cc$ $\vdash 0a1q_3b2c$ $\vdash 0aq_31b2c$ $\vdash 0q_3a1b2c$ $\vdash q_30a1b2c$ $\vdash 0q_0a1b2c$ ⊢*00*q*01122 ⊢001*q*₄122 ⊢*001122*q*₄ ⊢00112*q*₅2

 $q_0 aabbbcc$ $+^+0q_0 a1bb2c$ $+^+00q_0 11b22$ $+001q_4 1b22$ $+0011q_4 b22$ Construct a Turing machine accepting all words of **odd** length over the alphabet $\Sigma = \{a, b\}$.

Construct a Turing machine accepting all words of **odd** length over the alphabet $\Sigma = \{a, b\}$.

Multiple labels on an arrow are short for multiple transitions.

- Extensions of TMs such as
 - multiple tapes, or
 - nondeterminism

do not give extra expressive power.

- Extensions of TMs such as
 - multiple tapes, or
 - nondeterminism

do not give extra expressive power.

Multiple tapes can be simulated using a single tape with polynomial overhead in time complexity.

- Extensions of TMs such as
 - multiple tapes, or
 - nondeterminism

do not give extra expressive power.

Multiple tapes can be simulated using a single tape with polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function

 $\delta: \boldsymbol{Q} \times \boldsymbol{\Gamma} \to \boldsymbol{2}^{\boldsymbol{Q} \times \boldsymbol{\Gamma} \times \{\boldsymbol{L}, \boldsymbol{R}\}}$

- Extensions of TMs such as
 - multiple tapes, or
 - nondeterminism

do not give extra expressive power.

Multiple tapes can be simulated using a single tape with polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function

 $\delta: \boldsymbol{Q} \times \boldsymbol{\Gamma} \to \boldsymbol{2}^{\boldsymbol{Q} \times \boldsymbol{\Gamma} \times \{\boldsymbol{L}, \boldsymbol{R}\}}$

A nondeterministic TM can be simulated by deterministic TM using **breadth-first search** (all computations in parallel).

The overhead in **time complexity** is believed to be an **exponential factor**.

Church-Turing Thesis

Church-Turing thesis: Every computation of a computer can be simulated by a deterministic Turing machine.
Church-Turing thesis: Every computation of a computer can be simulated by a deterministic Turing machine.

This thesis has stood the test of time.

Also computations of **quantum computers** can be simulated by a Turing machines.

Quantum computers can do certain computations faster than classical computers, but they do not change the limits of computability.

Alonzo Church & Alan Turing

Two of the founders of the **theory of computability**.

Alonzo Church (1903-1995) is inventor of the λ -calculus.

Alan Turing (1912-1954)

- introduced the Turing machine,
- invented the Turing test,
- key role in cracking the German Enigma machine.

Both proved undecidability of validity in predicate logic.

A set *A* is countable if there is a surjective function $f : \mathbb{N} \to A$.

There are **countably** many TMs over an input alphabet Σ .

There are **uncountable** many languages over Σ .

A set *A* is countable if there is a surjective function $f : \mathbb{N} \to A$.

There are **countably** many TMs over an input alphabet Σ .

There are **uncountable** many languages over Σ .

Proof

Let $a \in \Sigma$. Assume L_0, L_1, L_2, \ldots is enumeration of all languages over $\{a\}$.

A set *A* is countable if there is a surjective function $f : \mathbb{N} \to A$.

There are **countably** many TMs over an input alphabet Σ .

There are **uncountable** many languages over Σ .

Proof

Let $a \in \Sigma$. Assume $L_0, L_1, L_2, ...$ is enumeration of all languages over $\{a\}$. Define a language L as follows: for every $i \ge 0$. $a^i \in L \iff a^i \notin L_i$

A set *A* is countable if there is a surjective function $f : \mathbb{N} \to A$.

There are **countably** many TMs over an input alphabet Σ .

There are **uncountable** many languages over Σ .

Proof

Let $a \in \Sigma$. Assume $L_0, L_1, L_2, ...$ is enumeration of all languages over $\{a\}$. Define a language L as follows: for every $i \ge 0$. $a^i \in L \iff a^i \notin L_i$ Then for every i > 0, we have $L \neq L_i$.

A set *A* is countable if there is a surjective function $f : \mathbb{N} \to A$.

There are **countably** many TMs over an input alphabet Σ .

There are **uncountable** many languages over Σ .

Proof

Let $a \in \Sigma$. Assume $L_0, L_1, L_2, ...$ is enumeration of all languages over $\{a\}$. Define a language L as follows: for every $i \ge 0$. $a^i \in L \iff a^i \notin L_i$ Then for every $i \ge 0$, we have $L \ne L_i$.

Thus *L* is **not** part of the above enumeration. Contradiction.

A set *A* is countable if there is a surjective function $f : \mathbb{N} \to A$.

There are **countably** many TMs over an input alphabet Σ .

There are **uncountable** many languages over Σ .

Proof

Let $a \in \Sigma$. Assume $L_0, L_1, L_2, ...$ is enumeration of all languages over $\{a\}$. Define a language L as follows: for every $i \ge 0$. $a^i \in L \iff a^i \notin L_i$ Then for every $i \ge 0$, we have $L \ne L_i$.

Thus *L* is **not** part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Universal Turing Machine

Universal Turing Machine

A computer can execute any program on any input.

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.
A universal TM gets as input

a Turing machine M (described as a word w)
an input word u

and then executes (simulates) M on u.

The input w and u can be written on the tape as w#u.

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.
A universal TM gets as input

a Turing machine M (described as a word w)
an input word u

and then executes (simulates) M on u.

The input *w* and *u* can be written on the tape as w#u.

Theorem

There exists a universal Turing machine.