Automata Theory :: Turing Machines

Jorg Endrullis

Vrije Universiteit Amsterdam

Turing Machines

| - /‘*/ﬂ
e\ [-
@
(et o
‘E._::""
7 { 10inolL!

@ o

| e o
Qiiig{o

Turing Machines

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

control unit

% read-write-head

Lt tape

Turing Machines

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

control unit

% read-write-head

Lt tape

In each step:
® the read-write-head reads a symbol from the tape,

® overwrites the symbol, and
® moves one place to the left or right.

Turing Machines

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

control unit

% read-write-head

Lt tape

In each step:
® the read-write-head reads a symbol from the tape,

® overwrites the symbol, and
® moves one place to the left or right.

The tape is two-sided infinite: unlimited memory!

Turing Machines

We introduce a blank symbol O. The initial tape content is
--- 0000 inputword 0OOOO - - -
There is a finite set of states Q and a finite tape alphabet T".

Turing Machines

We introduce a blank symbol O. The initial tape content is
--- 0000 inputword 0OOOO - - -
There is a finite set of states Q and a finite tape alphabet T".
The transition function 6 has the form
0:QxTI'—=>QxTx{L R}

Here ¢ is a partial function: 5(g, a) may be undefined.

Turing Machines

We introduce a blank symbol O. The initial tape content is
--- 0000 inputword 0OOOO - - -
There is a finite set of states Q and a finite tape alphabet T".

The transition function 6 has the form
0:QxTI'—=>QxTx{L R}

Here ¢ is a partial function: 5(g, a) may be undefined.

5(g,a) = (q', b, X) means: if
® the machine is in state g, and
® the head reads a from the tape
then
m then ais overwritten by b,
® the head moves 1 position left if X = L, right if X = R, and
= the machine switches to state q’.

Turing Machines

A deterministic Turing machine, short TM, is a 7-tuple
(Q L, 18,q0,0,F)
where
B Qs a finite set of states,
m > C '\ {O} afinite input alphabet,

I" a finite tape alphabet,

5:QxT — QxT x{L, R} a partial transition function,

Qo the starting state,

O € T the blank symbol,

F C Q a set of final (accepting) states.

Turing Machines

A deterministic Turing machine, short TM, is a 7-tuple
(Q L, 18,q0,0,F)
where
B Qs a finite set of states,
m > C '\ {O} afinite input alphabet,

I" a finite tape alphabet,

5:QxT — QxT x{L, R} a partial transition function,

Qo the starting state,

O € T the blank symbol,

m F C Q a set of final (accepting) states.

Assumption: 5(q, a) is undefined forevery g€ Fand a€e .

So the computation stops when reaching a final state.

Turing Machine Configuration

A configuration (q, c¢) of a Turing machine consists of
® g state g € Q, and
m 3 function ¢:Z — T, the tape content.
The non-blank positions {z € Z | ¢(z) # O} are finite.
The head of the machine stands on ¢(0).

(@)
1

le(=3)|e(—2)[e(—1)] ¢(0) | c(1) | c(2) | ¢(3) |

Turing Machine Configuration

A configuration (q, c¢) of a Turing machine consists of
® g state g € Q, and
m 3 function ¢:Z — T, the tape content.
The non-blank positions {z € Z | ¢(z) # O} are finite.
The head of the machine stands on ¢(0).

(@)
1

le(=3)|e(—2)[e(—1)] ¢(0) | c(1) | c(2) | ¢(3) |

Let n,m € N (exist for every configuration) such that
Vi< —n.c(i) =0 and Vi>m.c(i) =0
Then we denote the configuration by the finite word
c(—n)e(—n+1)---¢c(—1) ge(0)e(1)---c(m)

Turing Machine Configuration
So configurations are denoted by words from '™ x Q x I'*.

For instance, the configuration

()
!

| ofefogfafofob]o]

can be denoted by
ed g abb

Turing Machine Configuration
So configurations are denoted by words from '™ x Q x I'*.

For instance, the configuration

()
!

| ofefogfafofob]o]

can be denoted by
ed g abb
The words
ed g abbO Oed g abb O0ed q abbO

denote the same configuration.

Turing Machine Configuration
So configurations are denoted by words from '™ x Q x I'*.

For instance, the configuration

()
!

| ofefogfafofob]o]

can be denoted by
ed g abb
The words
edgabbl =~ Oedgabb ~ OOedqabbO

denote the same configuration.

We write w ~ v if w and v denote the same configuration.

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (& is undefined in all other case)
5(qo,a) = (9o, &, R) 8(qy,a) = (g1,b,L) 5(qo,0) = (g4, ¢, L)
Then we have steps:

Qoaa

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (& is undefined in all other case)
5(qo,a) = (9o, &, R) 8(qy,a) = (g1,b,L) 5(qo,0) = (g4, ¢, L)
Then we have steps:

Qoaat aqua

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (& is undefined in all other case)
5(qo,a) = (9o, &, R) 8(qy,a) = (g1,b,L) 5(qo,0) = (g4, ¢, L)
Then we have steps:

Qoaat- aquat aaqg

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (& is undefined in all other case)
5(qo,a) = (9o, &, R) 8(qy,a) = (g1,b,L) 5(qo,0) = (g4, ¢, L)
Then we have steps:

Qoaat aqoat- aaqo

Here we use aaqy ~ aaqyC

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (6 is undefined in all other case)
5(qo,a) = (qo,a, R) d(q1,a) = (q1,b,L) 8(qo,0) = (q1,¢,L)
Then we have steps:

Qoaat- aquat aaqp - aqgiac

Here we use aaqy ~ aaqyC

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (& is undefined in all other case)
8(qo,a) = (qo,a,R) &(aqn,a) = (q1,b,L) &(qo,0) = (qu,¢,L)
Then we have steps:

qQoaat aquat aaqy - agiac - giabc

Here we use aaqy ~ aaqyC

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (& is undefined in all other case)
5(qo,a) = (qo,a, R) d(q1,a) = (q1,b,L) 8(qo,0) = (q1,¢,L)
Then we have steps:
qQoaat aquat aaqy - agiac - giabc
Here we use aaqp ~ aaqyQd and giabc ~ 0g;abc.

Turing Machine Computations

The computation steps i on configurations are defined by:
vgaw + vbq'w if 5(q,a) = (q’, b, R)
veqaw + vq'cbw if 5(q,a) = (q’,b, L)
where v,w e ™, a,celand g € Q.

We write * for a computation of zero or more steps.

Assume that (6 is undefined in all other case)
8(qo,a) = (qo,a,R) o(qy,a) = (q1,b,L) 8(qo,0) = (q1,¢,L)
Then we have steps:
qQoaat aquat aaqy + agiac - giabc - giObbc
Here we use aaqp ~ aaqyQd and giabc ~ 0g;abc.

A configuration vgaw is a halting state if 5(q, a) is undefined.

Drawing Turing Machines

The transition graph for a TMs contains

/

an arrow g gL q’ whenever &(q,a) = (q’,b,X)

The Turing machine M = (Q, %, T, 8, qo, O, F) with £ ={ a, b},
N={ab0}, Q={q,q,9} F={qg2}and
8(qo, @) = (qn, b, R) 8(an,a) = (qo, b, R)
5(qo, b) = (qo, &, R) 8(qn,b) = (q1,a,R)
6(q1,0) = (g, 0, L)
can be visualised as

b/aR b/aR
a/bR

m /\m D/D L
-~ _C@O——@

a/bR

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, L, T; 6, o, O, F) is
{weZXZ* | gqwt* uqv forsomeqe F, u,verl™}

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, L, T; 6, o, O, F) is
{weZXZ* | gqwt* uqv forsomeqe F, u,verl™}
If w & L(M) this can have two causes:

® the execution halts in a configuration vqw with g ¢ F, or
® the execution is infinite (never halts).

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, L, T; 6, o, O, F) is
{weZXZ* | gqwt* uqv forsomeqe F, u,verl™}
If w & L(M) this can have two causes:

® the execution halts in a configuration vqw with g ¢ F, or
® the execution is infinite (never halts).

b/aR b/aR What is L(M)?
a/b R

m/—\m /oL
~@__ @

a/b R

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, L, T; 6, o, O, F) is
{weZXZ* | gqwt* uqv forsomeqe F, u,verl™}
If w & L(M) this can have two causes:

® the execution halts in a configuration vqw with g ¢ F, or
® the execution is infinite (never halts).

b/aR b/aR What is L(M)?

() @bk go/oL The set of words over
—
_’v Y ={a, b} with an odd

a/bR number of a's.

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, L, T; 6, o, O, F) is
{weZXZ* | gqwt* uqv forsomeqe F, u,verl™}
If w & L(M) this can have two causes:

® the execution halts in a configuration vqw with g ¢ F, or
® the execution is infinite (never halts).

b/aR b/aR What is L(M)?

() @bk go/oL The set of words over
—
_’v Y ={a, b} with an odd

a/bR number of a's.

A language is recursively enumerable if it is accepted by a TM.

Example

We construct a TM M with L(M) ={a"b"c¢" |n>1}.

Example

We construct a TM M with L(M) ={a"b"c¢" |n>1}.

Idea: stepwise replace one a by 0, one b by 1 and one ¢ by 2.

Example

We construct a TM M with L(M) ={a"b"c¢" |n>1}.

Idea: stepwise replace one a by 0, one b by 1 and one ¢ by 2.
mY={abclandl ={a,b,c,0,1,2,0}
B (p: Read a, replace by 0, move right and switch to g;.

® g;: Keep moving right until we read b.
Replace b by 1, move right and switch to g».

B g.: Keep moving right until we read c.
Replace ¢ by 2, move left and switch to gs.

B q3: Keep moving left until we read 0.
Move right and switch back to qg.

If we read 1 in qp, switch to qy.

q4: Keep moving right to check whether there are a’s, b’s
or c’s left. If not, then go to final state gs.

Example

® O

-® ©® © ©

Example

® ©® ©

Example

Example

!

a/0OR
S@,
b/1 R

Example

!

a/0OR
S@,
b/1 R

C@

b/bR — 2/2R

Example

!

a/0OR
S@,
b/1 R

C@

b/bR 7 2/2R
c/2 L

Example

!

a/0OR

C@D

a/aR | 1/1R
b/1 R

C@

b/bR | 2/2R

c/2L 02/2 L
Qb/b L
/

a/al 71

Example

!

a/0OR
S@,
b/1 R

C@

b/bR | 2/2R

0/0R

Example

0/0R

a/aR

v
1/1R
@—®

a/0OR

C@D

1R
b/1 R

C@

b/b R

Example

a/0OR

a/aR

0/0R| b1 R

b/b R

v
1/1R
—)
&

2/2 R

()
(@)

1/1 R

C@D

1/1R

C@

Example

Example

goaabbcc

Example

goaabbcc
F0qqabbcc

Example

-

a/aR
0/0R

b/b R

a/0OR

b/1 R

C@

2/2 R

1/1 le/m L

@ @

1/1R

goaabbcc
F0qqabbcc
F0aqq bbcc

Example

-

a/aR
0/0R

b/b R

a/0OR

b/1 R

C@

2/2 R

1/1 le/m L

@ @

1/1R

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc

Example

-

a/aR
0/0R

b/b R

a/0OR

b/1 R

C@

2/2 R

1/1 le/m L

@ @

1/1R

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc

Example

-

a/aR
0/0R

b/b R

a/0OR

b/1 R

C@

2/2 R

1/1 le/m L

@ @

1/1R

goaabbcc
+0q;abbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c

Example

1/1F:’
.
(/

2/2 R

()

a/0 R 1/1 RID/IZIL
C@)
a/a R.1/1 R ‘
0/0R| " p/1R
_
b/b H%Fw’
c/2L 2/2 L

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122
F*001122q,

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122
F*001122q,
F00112gs2

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122
F*001122q,
F00112gs2

goaabbbcc

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122
F*001122q,
F00112gs2

goaabbbcc
F0goalbb2c

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122
F*001122q,
F00112gs2

goaabbbcc
F0goalbb2c
F00gp11622

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122
F*001122q,
F00112gs2

goaabbbcc
F0goalbb2c
F00gp11622
F001qg41b22

Example

goaabbcc
F0qqabbcc
F0aqq bbcc
F0alqg.bcc
F0albg.cc
FO0alqgsb2c
FOags1b2c¢
FOgzalb2c
Fgs0alb2c
FOgoalb2c
F*00gp1122
F001q4122
F*001122q,
F00112gs2

goaabbbcc
F0goalbb2c
F00gp11622
F001qg41b22
F0011g,b22

Exercise

Construct a Turing machine accepting all words of odd length
over the alphabet ~ = {a, b}.

Exercise

Construct a Turing machine accepting all words of odd length
over the alphabet ~ = {a, b}.

a/aR
bR oonR
@ _C@O———@®
a/aR
b/b R

Multiple labels on an arrow are short for multiple transitions.

Extensions of Turing Machines

Extensions of Turing Machines

Extensions of TMs such as
® multiple tapes, or
B nondeterminism
do not give extra expressive power.

Extensions of Turing Machines

Extensions of TMs such as
® multiple tapes, or
B nondeterminism
do not give extra expressive power.

Multiple tapes can be simulated using a single tape with
polynomial overhead in time complexity.

Extensions of Turing Machines

Extensions of TMs such as
® multiple tapes, or
B nondeterminism
do not give extra expressive power.

Multiple tapes can be simulated using a single tape with
polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function
5:Qx T — 2@ LA

Extensions of Turing Machines

Extensions of TMs such as
® multiple tapes, or
B nondeterminism
do not give extra expressive power.

Multiple tapes can be simulated using a single tape with
polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function
5:Qx T — 2@ LA

A nondeterministic TM can be simulated by deterministic TM
using breadth-first search (all computations in parallel).

The overhead in time complexity is believed to be an
exponential factor.

Church-Turing Thesis

Church-Turing Thesis

Church-Turing thesis: Every computation of a computer can
be simulated by a deterministic Turing machine.

Church-Turing Thesis

Church-Turing thesis: Every computation of a computer can
be simulated by a deterministic Turing machine.

This thesis has stood the test of time.

Also computations of quantum computers can be simulated
by a Turing machines.

Quantum computers can do certain computations faster than
classical computers, but they do not change the limits of
computability.

Alonzo Church & Alan Turing

7l

Two of the founders of the theory of computability.
Alonzo Church (1903-1995) is inventor of the A-calculus.

Alan Turing (1912-1954)
® introduced the Turing machine,

® invented the Turing test,

m key role in cracking the German Enigma machine.

Both proved undecidability of validity in predicate logic.

Not all Languages are Recursively Enumerable

Not all Languages are Recursively Enumerable
A set A is countable if there is a surjective function f: N — A.

There are countably many TMs over an input alphabet .

There are uncountable many languages over X.

Not all Languages are Recursively Enumerable
A set A is countable if there is a surjective function f: N — A.

There are countably many TMs over an input alphabet .

There are uncountable many languages over X.

Proof
Letac L.

Assume Ly, L4, Lo, ... is enumeration of all languages over {a}.

Not all Languages are Recursively Enumerable
A set A is countable if there is a surjective function f: N — A.

There are countably many TMs over an input alphabet .

There are uncountable many languages over X.

Proof
Letac L.

Assume Ly, L4, Lo, ... is enumeration of all languages over {a}.

Define a language L as follows: for every i > 0.

adel — a¢lL;

Not all Languages are Recursively Enumerable
A set A is countable if there is a surjective function f: N — A.

There are countably many TMs over an input alphabet .

There are uncountable many languages over X.

Proof
Letac L.

Assume Ly, L4, Lo, ... is enumeration of all languages over {a}.
Define a language L as follows: for every i > 0.

adel — a¢lL;
Then for every i > 0, we have L # L;.

Not all Languages are Recursively Enumerable
A set A is countable if there is a surjective function f: N — A.

There are countably many TMs over an input alphabet .

There are uncountable many languages over X.

Proof
Letac L.

Assume Ly, L4, Lo, ... is enumeration of all languages over {a}.
Define a language L as follows: for every i > 0.
adel — a¢lL;
Then for every i > 0, we have L # L;.
Thus L is not part of the above enumeration. Contradiction.

Not all Languages are Recursively Enumerable
A set A is countable if there is a surjective function f: N — A.

There are countably many TMs over an input alphabet .

There are uncountable many languages over X.

Proof
Letae X
Assume Ly, L4, Lo, ... is enumeration of all languages over {a}.

Define a language L as follows: for every i > 0.
adel — a¢lL;
Then for every i > 0, we have L # L;.
Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Universal Turing Machine

Universal Turing Machine

A computer can execute any program on any input.

Universal Turing Machine

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.

A universal TM gets as input
® a Turing machine M (described as a word w)

® an input word u
and then executes (simulates) M on u.

The input w and u can be written on the tape as w#u.

Universal Turing Machine

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.

A universal TM gets as input
® a Turing machine M (described as a word w)

® an input word u
and then executes (simulates) M on u.

The input w and u can be written on the tape as w#u.

Theorem
There exists a universal Turing machine.

	Turing Machines

