
Automata Theory :: Turing Machines

Jörg Endrullis

Vrije Universiteit Amsterdam

Turing Machines

Turing Machines

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

. tape

control unit

read-write-head

In each step:
the read-write-head reads a symbol from the tape,

overwrites the symbol, and

moves one place to the left or right.

The tape is two-sided infinite: unlimited memory!

Turing Machines

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

. tape

control unit

read-write-head

In each step:
the read-write-head reads a symbol from the tape,

overwrites the symbol, and

moves one place to the left or right.

The tape is two-sided infinite: unlimited memory!

Turing Machines

Turing machines can read and write the input word.

Input is written on a tape on which a read-write-head works.

. tape

control unit

read-write-head

In each step:
the read-write-head reads a symbol from the tape,

overwrites the symbol, and

moves one place to the left or right.

The tape is two-sided infinite: unlimited memory!

Turing Machines

We introduce a blank symbol 2. The initial tape content is
· · ·2222 input word 2222 · · ·

There is a finite set of states Q and a finite tape alphabet Γ .

The transition function δ has the form

δ : Q × Γ → Q × Γ × {L,R }

Here δ is a partial function: δ(q,a) may be undefined.

δ(q,a) = (q ′,b,X) means: if
the machine is in state q, and
the head reads a from the tape

then
then a is overwritten by b,
the head moves 1 position left if X = L, right if X = R, and
the machine switches to state q ′.

Turing Machines

We introduce a blank symbol 2. The initial tape content is
· · ·2222 input word 2222 · · ·

There is a finite set of states Q and a finite tape alphabet Γ .

The transition function δ has the form

δ : Q × Γ → Q × Γ × {L,R }

Here δ is a partial function: δ(q,a) may be undefined.

δ(q,a) = (q ′,b,X) means: if
the machine is in state q, and
the head reads a from the tape

then
then a is overwritten by b,
the head moves 1 position left if X = L, right if X = R, and
the machine switches to state q ′.

Turing Machines

We introduce a blank symbol 2. The initial tape content is
· · ·2222 input word 2222 · · ·

There is a finite set of states Q and a finite tape alphabet Γ .

The transition function δ has the form

δ : Q × Γ → Q × Γ × {L,R }

Here δ is a partial function: δ(q,a) may be undefined.

δ(q,a) = (q ′,b,X) means: if
the machine is in state q, and
the head reads a from the tape

then
then a is overwritten by b,
the head moves 1 position left if X = L, right if X = R, and
the machine switches to state q ′.

Turing Machines

A deterministic Turing machine, short TM, is a 7-tuple

(Q, Σ, Γ, δ,q0,2,F)

where
Q is a finite set of states,

Σ ⊆ Γ \ {2 } a finite input alphabet,

Γ a finite tape alphabet,

δ : Q × Γ → Q × Γ × {L,R } a partial transition function,

q0 the starting state,

2 ∈ Γ the blank symbol,

F ⊆ Q a set of final (accepting) states.

Assumption: δ(q,a) is undefined for every q ∈ F and a ∈ Γ .

So the computation stops when reaching a final state.

Turing Machines

A deterministic Turing machine, short TM, is a 7-tuple

(Q, Σ, Γ, δ,q0,2,F)

where
Q is a finite set of states,

Σ ⊆ Γ \ {2 } a finite input alphabet,

Γ a finite tape alphabet,

δ : Q × Γ → Q × Γ × {L,R } a partial transition function,

q0 the starting state,

2 ∈ Γ the blank symbol,

F ⊆ Q a set of final (accepting) states.

Assumption: δ(q,a) is undefined for every q ∈ F and a ∈ Γ .

So the computation stops when reaching a final state.

Turing Machine Configuration

A configuration (q, c) of a Turing machine consists of
a state q ∈ Q, and

a function c : Z → Γ , the tape content.
The non-blank positions {z ∈ Z | c(z) 6= 2} are finite.
The head of the machine stands on c(0).

.

q

c(−3) c(−2) c(−1) c(0) c(1) c(2) c(3)

Let n,m ∈ N (exist for every configuration) such that

∀i < −n. c(i) = 2 and ∀i > m. c(i) = 2

Then we denote the configuration by the finite word

c(−n)c(−n + 1) · · · c(−1) q c(0)c(1) · · · c(m)

Turing Machine Configuration

A configuration (q, c) of a Turing machine consists of
a state q ∈ Q, and

a function c : Z → Γ , the tape content.
The non-blank positions {z ∈ Z | c(z) 6= 2} are finite.
The head of the machine stands on c(0).

.

q

c(−3) c(−2) c(−1) c(0) c(1) c(2) c(3)

Let n,m ∈ N (exist for every configuration) such that

∀i < −n. c(i) = 2 and ∀i > m. c(i) = 2

Then we denote the configuration by the finite word

c(−n)c(−n + 1) · · · c(−1) q c(0)c(1) · · · c(m)

Turing Machine Configuration

So configurations are denoted by words from Γ∗ ×Q × Γ∗.

For instance, the configuration

.

q

2 e d a b b 2

can be denoted by

ed q abb

The words

ed q abb2

≈

2ed q abb

≈

22ed q abb2 · · ·

denote the same configuration.

We write w ≈ v if w and v denote the same configuration.

Turing Machine Configuration

So configurations are denoted by words from Γ∗ ×Q × Γ∗.

For instance, the configuration

.

q

2 e d a b b 2

can be denoted by

ed q abb

The words

ed q abb2

≈

2ed q abb

≈

22ed q abb2 · · ·

denote the same configuration.

We write w ≈ v if w and v denote the same configuration.

Turing Machine Configuration

So configurations are denoted by words from Γ∗ ×Q × Γ∗.

For instance, the configuration

.

q

2 e d a b b 2

can be denoted by

ed q abb

The words

ed q abb2 ≈ 2ed q abb ≈ 22ed q abb2 · · ·

denote the same configuration.

We write w ≈ v if w and v denote the same configuration.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa

` aq0a ` aaq0 ` aq1ac ` q1abc ` q12bbc

Here we use aaq0 ≈ aaq02 and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa

` aq0a ` aaq0 ` aq1ac ` q1abc ` q12bbc

Here we use aaq0 ≈ aaq02 and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa ` aq0a

` aaq0 ` aq1ac ` q1abc ` q12bbc

Here we use aaq0 ≈ aaq02 and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa ` aq0a ` aaq0

` aq1ac ` q1abc ` q12bbc

Here we use aaq0 ≈ aaq02 and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa ` aq0a ` aaq0

` aq1ac ` q1abc ` q12bbc

Here we use aaq0 ≈ aaq02

and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa ` aq0a ` aaq0 ` aq1ac

` q1abc ` q12bbc

Here we use aaq0 ≈ aaq02

and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa ` aq0a ` aaq0 ` aq1ac ` q1abc

` q12bbc

Here we use aaq0 ≈ aaq02

and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa ` aq0a ` aaq0 ` aq1ac ` q1abc

` q12bbc

Here we use aaq0 ≈ aaq02 and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Turing Machine Computations

The computation steps ` on configurations are defined by:

vqaw ` vbq ′w if δ(q,a) = (q ′,b,R)

vcqaw ` vq ′cbw if δ(q,a) = (q ′,b,L)

where v ,w ∈ Γ∗, a, c ∈ Γ and q ∈ Q.

We write `∗ for a computation of zero or more steps.

Assume that (δ is undefined in all other case)

δ(q0,a) = (q0,a,R) δ(q1,a) = (q1,b,L) δ(q0,2) = (q1, c,L)

Then we have steps:

q0aa ` aq0a ` aaq0 ` aq1ac ` q1abc ` q12bbc

Here we use aaq0 ≈ aaq02 and q1abc ≈ 2q1abc.

A configuration vqaw is a halting state if δ(q,a) is undefined.

Drawing Turing Machines

The transition graph for a TMs contains

an arrow q
a/b X−→ q ′ whenever δ(q,a) = (q ′,b,X)

The Turing machine M = (Q, Σ, Γ, δ,q0,2,F) with Σ = {a,b },
Γ = {a,b,2 }, Q = {q0,q1,q2 }, F = {q2 } and

δ(q0,a) = (q1,b,R) δ(q1,a) = (q0,b,R)

δ(q0,b) = (q0,a,R) δ(q1,b) = (q1,a,R)

δ(q1,2) = (q2,2,L)

can be visualised as

q0 q1 q2

a/b R
b/a R

a/b R

b/a R

2/2 L

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, Σ, Γ, δ,q0,2,F) is

{w ∈ Σ∗ | q0w `∗ uqv for some q ∈ F , u, v ∈ Γ∗ }

If w 6∈ L(M) this can have two causes:
the execution halts in a configuration vqw with q 6∈ F , or
the execution is infinite (never halts).

q0 q1 q2

a/b R
b/a R

a/b R

b/a R

2/2 L

What is L(M)?

The set of words over
Σ = {a,b } with an odd
number of a’s.

A language is recursively enumerable if it is accepted by a TM.

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, Σ, Γ, δ,q0,2,F) is

{w ∈ Σ∗ | q0w `∗ uqv for some q ∈ F , u, v ∈ Γ∗ }

If w 6∈ L(M) this can have two causes:
the execution halts in a configuration vqw with q 6∈ F , or
the execution is infinite (never halts).

q0 q1 q2

a/b R
b/a R

a/b R

b/a R

2/2 L

What is L(M)?

The set of words over
Σ = {a,b } with an odd
number of a’s.

A language is recursively enumerable if it is accepted by a TM.

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, Σ, Γ, δ,q0,2,F) is

{w ∈ Σ∗ | q0w `∗ uqv for some q ∈ F , u, v ∈ Γ∗ }

If w 6∈ L(M) this can have two causes:
the execution halts in a configuration vqw with q 6∈ F , or
the execution is infinite (never halts).

q0 q1 q2

a/b R
b/a R

a/b R

b/a R

2/2 L

What is L(M)?

The set of words over
Σ = {a,b } with an odd
number of a’s.

A language is recursively enumerable if it is accepted by a TM.

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, Σ, Γ, δ,q0,2,F) is

{w ∈ Σ∗ | q0w `∗ uqv for some q ∈ F , u, v ∈ Γ∗ }

If w 6∈ L(M) this can have two causes:
the execution halts in a configuration vqw with q 6∈ F , or
the execution is infinite (never halts).

q0 q1 q2

a/b R
b/a R

a/b R

b/a R

2/2 L

What is L(M)?

The set of words over
Σ = {a,b } with an odd
number of a’s.

A language is recursively enumerable if it is accepted by a TM.

Turing Machines and Languages

The language L(M) accepted by TM M = (Q, Σ, Γ, δ,q0,2,F) is

{w ∈ Σ∗ | q0w `∗ uqv for some q ∈ F , u, v ∈ Γ∗ }

If w 6∈ L(M) this can have two causes:
the execution halts in a configuration vqw with q 6∈ F , or
the execution is infinite (never halts).

q0 q1 q2

a/b R
b/a R

a/b R

b/a R

2/2 L

What is L(M)?

The set of words over
Σ = {a,b } with an odd
number of a’s.

A language is recursively enumerable if it is accepted by a TM.

Example

We construct a TM M with L(M) = {anbncn | n ≥ 1 }.

Idea: stepwise replace one a by 0, one b by 1 and one c by 2.
Σ = {a,b, c } and Γ = {a,b, c,0,1,2,2 }

q0: Read a, replace by 0, move right and switch to q1.
q1: Keep moving right until we read b.

Replace b by 1, move right and switch to q2.
q2: Keep moving right until we read c.

Replace c by 2, move left and switch to q3.
q3: Keep moving left until we read 0.

Move right and switch back to q0.
If we read 1 in q0, switch to q4.
q4: Keep moving right to check whether there are a’s, b’s

or c’s left. If not, then go to final state q5.

Example

We construct a TM M with L(M) = {anbncn | n ≥ 1 }.

Idea: stepwise replace one a by 0, one b by 1 and one c by 2.

Σ = {a,b, c } and Γ = {a,b, c,0,1,2,2 }

q0: Read a, replace by 0, move right and switch to q1.
q1: Keep moving right until we read b.

Replace b by 1, move right and switch to q2.
q2: Keep moving right until we read c.

Replace c by 2, move left and switch to q3.
q3: Keep moving left until we read 0.

Move right and switch back to q0.
If we read 1 in q0, switch to q4.
q4: Keep moving right to check whether there are a’s, b’s

or c’s left. If not, then go to final state q5.

Example

We construct a TM M with L(M) = {anbncn | n ≥ 1 }.

Idea: stepwise replace one a by 0, one b by 1 and one c by 2.
Σ = {a,b, c } and Γ = {a,b, c,0,1,2,2 }

q0: Read a, replace by 0, move right and switch to q1.
q1: Keep moving right until we read b.

Replace b by 1, move right and switch to q2.
q2: Keep moving right until we read c.

Replace c by 2, move left and switch to q3.
q3: Keep moving left until we read 0.

Move right and switch back to q0.
If we read 1 in q0, switch to q4.
q4: Keep moving right to check whether there are a’s, b’s

or c’s left. If not, then go to final state q5.

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R

2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc

`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc

`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc

`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc

`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc

`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c

`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c

`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c

`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c

`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c

`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122

`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122

`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc

`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c

`+00q011b22
`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22

`001q41b22
`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22

`0011q4b22

Example

q0

q1

q2

q3

q4

q5

a/0 R

a/a R 1/1 R

b/1 R

b/b R 2/2 R

c/2 L

a/a L 1/1 L

b/b L

2/2 L

0/0 R

1/1 R

2/2 R

1/1 R 2/2 L

q0aabbcc
`0q1abbcc
`0aq1bbcc
`0a1q2bcc
`0a1bq2cc
`0a1q3b2c
`0aq31b2c
`0q3a1b2c
`q30a1b2c
`0q0a1b2c
`∗00q01122
`001q4122
`∗001122q4

`00112q52

q0aabbbcc
`+0q0a1bb2c
`+00q011b22
`001q41b22
`0011q4b22

Exercise

Construct a Turing machine accepting all words of odd length
over the alphabet Σ = {a,b}.

q0 q1 q2

a/a R
b/b R

a/a R
b/b R

2/2 R

Multiple labels on an arrow are short for multiple transitions.

Exercise

Construct a Turing machine accepting all words of odd length
over the alphabet Σ = {a,b}.

q0 q1 q2

a/a R
b/b R

a/a R
b/b R

2/2 R

Multiple labels on an arrow are short for multiple transitions.

Extensions of Turing Machines

Extensions of Turing Machines

Extensions of TMs such as
multiple tapes, or
nondeterminism

do not give extra expressive power.

Multiple tapes can be simulated using a single tape with
polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function

δ : Q × Γ → 2Q×Γ×{L,R}

A nondeterministic TM can be simulated by deterministic TM
using breadth-first search (all computations in parallel).

The overhead in time complexity is believed to be an
exponential factor.

Extensions of Turing Machines

Extensions of TMs such as
multiple tapes, or
nondeterminism

do not give extra expressive power.

Multiple tapes can be simulated using a single tape with
polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function

δ : Q × Γ → 2Q×Γ×{L,R}

A nondeterministic TM can be simulated by deterministic TM
using breadth-first search (all computations in parallel).

The overhead in time complexity is believed to be an
exponential factor.

Extensions of Turing Machines

Extensions of TMs such as
multiple tapes, or
nondeterminism

do not give extra expressive power.

Multiple tapes can be simulated using a single tape with
polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function

δ : Q × Γ → 2Q×Γ×{L,R}

A nondeterministic TM can be simulated by deterministic TM
using breadth-first search (all computations in parallel).

The overhead in time complexity is believed to be an
exponential factor.

Extensions of Turing Machines

Extensions of TMs such as
multiple tapes, or
nondeterminism

do not give extra expressive power.

Multiple tapes can be simulated using a single tape with
polynomial overhead in time complexity.

Nondeterministic Turing machines have as transition function

δ : Q × Γ → 2Q×Γ×{L,R}

A nondeterministic TM can be simulated by deterministic TM
using breadth-first search (all computations in parallel).

The overhead in time complexity is believed to be an
exponential factor.

Church-Turing Thesis

Church-Turing Thesis

Church-Turing thesis: Every computation of a computer can
be simulated by a deterministic Turing machine.

This thesis has stood the test of time.

Also computations of quantum computers can be simulated
by a Turing machines.

Quantum computers can do certain computations faster than
classical computers, but they do not change the limits of
computability.

Church-Turing Thesis

Church-Turing thesis: Every computation of a computer can
be simulated by a deterministic Turing machine.

This thesis has stood the test of time.

Also computations of quantum computers can be simulated
by a Turing machines.

Quantum computers can do certain computations faster than
classical computers, but they do not change the limits of
computability.

Alonzo Church & Alan Turing

Two of the founders of the theory of computability.

Alonzo Church (1903-1995) is inventor of the λ-calculus.

Alan Turing (1912-1954)
introduced the Turing machine,

invented the Turing test,

key role in cracking the German Enigma machine.

Both proved undecidability of validity in predicate logic.

Not all Languages are Recursively Enumerable

Not all Languages are Recursively Enumerable

A set A is countable if there is a surjective function f : N → A.

There are countably many TMs over an input alphabet Σ.

There are uncountable many languages over Σ.

Proof
Let a ∈ Σ.
Assume L0,L1,L2, . . . is enumeration of all languages over {a}.

Define a language L as follows: for every i ≥ 0.

ai ∈ L ⇐⇒ ai 6∈ Li

Then for every i ≥ 0, we have L 6= Li .
Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Not all Languages are Recursively Enumerable

A set A is countable if there is a surjective function f : N → A.

There are countably many TMs over an input alphabet Σ.

There are uncountable many languages over Σ.

Proof
Let a ∈ Σ.
Assume L0,L1,L2, . . . is enumeration of all languages over {a}.

Define a language L as follows: for every i ≥ 0.

ai ∈ L ⇐⇒ ai 6∈ Li

Then for every i ≥ 0, we have L 6= Li .
Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Not all Languages are Recursively Enumerable

A set A is countable if there is a surjective function f : N → A.

There are countably many TMs over an input alphabet Σ.

There are uncountable many languages over Σ.

Proof
Let a ∈ Σ.
Assume L0,L1,L2, . . . is enumeration of all languages over {a}.

Define a language L as follows: for every i ≥ 0.

ai ∈ L ⇐⇒ ai 6∈ Li

Then for every i ≥ 0, we have L 6= Li .
Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Not all Languages are Recursively Enumerable

A set A is countable if there is a surjective function f : N → A.

There are countably many TMs over an input alphabet Σ.

There are uncountable many languages over Σ.

Proof
Let a ∈ Σ.
Assume L0,L1,L2, . . . is enumeration of all languages over {a}.

Define a language L as follows: for every i ≥ 0.

ai ∈ L ⇐⇒ ai 6∈ Li

Then for every i ≥ 0, we have L 6= Li .

Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Not all Languages are Recursively Enumerable

A set A is countable if there is a surjective function f : N → A.

There are countably many TMs over an input alphabet Σ.

There are uncountable many languages over Σ.

Proof
Let a ∈ Σ.
Assume L0,L1,L2, . . . is enumeration of all languages over {a}.

Define a language L as follows: for every i ≥ 0.

ai ∈ L ⇐⇒ ai 6∈ Li

Then for every i ≥ 0, we have L 6= Li .
Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Not all Languages are Recursively Enumerable

A set A is countable if there is a surjective function f : N → A.

There are countably many TMs over an input alphabet Σ.

There are uncountable many languages over Σ.

Proof
Let a ∈ Σ.
Assume L0,L1,L2, . . . is enumeration of all languages over {a}.

Define a language L as follows: for every i ≥ 0.

ai ∈ L ⇐⇒ ai 6∈ Li

Then for every i ≥ 0, we have L 6= Li .
Thus L is not part of the above enumeration. Contradiction.

Conclusion: not all languages are recursively enumerable.

Universal Turing Machine

Universal Turing Machine

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.

A universal TM gets as input
a Turing machine M (described as a word w)

an input word u
and then executes (simulates) M on u.

The input w and u can be written on the tape as w#u.

Theorem
There exists a universal Turing machine.

Universal Turing Machine

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.

A universal TM gets as input
a Turing machine M (described as a word w)

an input word u
and then executes (simulates) M on u.

The input w and u can be written on the tape as w#u.

Theorem
There exists a universal Turing machine.

Universal Turing Machine

A computer can execute any program on any input.

A TM is called universal if it can simulate every TM.

A universal TM gets as input
a Turing machine M (described as a word w)

an input word u
and then executes (simulates) M on u.

The input w and u can be written on the tape as w#u.

Theorem
There exists a universal Turing machine.

	Turing Machines

