Automata Theory :: Properties of Context-Free Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

TheoremIf L_1 and L_2 are context-free, then also $L_1 \cup L_2$ L_1L_2 L_1^* $L_1 \cup L_2$ L_1L_2 L_1^*

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

 $L_i = L(G_i)$

for i = 1, 2. Let G_1 and G_2 have no variables in common.

- $L_1 \cup L_2$: Add rules $S \rightarrow S_1 \mid S_2$, and pick S as start variable.
- L_1L_2 : Add $S \rightarrow S_1S_2$, and pick S as start variable.
- L_1^* : Add $S \to S_1 S \mid \lambda$, and pick *S* as start variable.
- L_1^R : Reverse all rules $(x \to y \text{ becomes } x^R \to y^R)$.

The intersection $L_1 \cap L_2$ is not always context-free. (for context free languages L_1 and L_2)

The languages L_1 and L_2 are context-free: $L_1 = \{ a^n b^n c^m \mid n \ge 0 \land m \ge 0 \}$ $L_2 = \{ a^n b^m c^m \mid n \ge 0 \land m \ge 0 \}$ However $L_1 \cap L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$ is **not** context-free.

Also $\overline{L_1}$ and $\underline{L_1 \setminus L_2}$ are not always context-free. (for context free languages L_1 and L_2)

Namely, we have:

 $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$

 $\overline{L_1} = \Sigma^* \setminus L_1$

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Construction

Let

• $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an NPDA accepting L_1 , and

• $N = (R, \Sigma, \epsilon, r_0, G)$ a DFA accepting L_2 .

We construct an NPDA $\widehat{M} = (\widehat{Q}, \Sigma, \Gamma, \widehat{\delta}, \widehat{q}_0, z, \widehat{F})$ where

$$\widehat{\boldsymbol{Q}} = \boldsymbol{Q} \times \boldsymbol{R}$$
 $\widehat{\boldsymbol{q}}_0 = (\boldsymbol{q}_0, \boldsymbol{r}_0)$ $\widehat{\boldsymbol{F}} = \boldsymbol{F} \times \boldsymbol{G}$

The transition function $\hat{\delta}$ is defined by:

 $\widehat{M}: (q, r) \xrightarrow{a[b/v]} (q', r') \text{ if } M: q \xrightarrow{a[b/v]} q' \text{ and } N: r \xrightarrow{a} r'$ $\widehat{M}: (q, r) \xrightarrow{\lambda[b/v]} (q', r) \text{ if } M: q \xrightarrow{\lambda[b/v]} q'$ Then $L(\widehat{M}) = L(M) \cap L(N).$

Question

Why does the construction not work for two NPDA's? (instead of an NPDA and a DFA)

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \setminus L_2$ is context-free.

Proof.

 $\overline{L_2}$ is regular, thus $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ is context-free.

$L_2 \setminus L_1$ is **not** always context-free. Namely $\overline{L_1} = \Sigma^* \setminus L_1$

Applications

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

 $\{a^nb^n \mid n \ge 1000\}$ is context-free.

Show that the language

$$L = \{ w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) = n_c(w) \}$$

is not context-free.

For a contradiction, assume *L* was context-free.

The language $L(a^*b^*c^*)$ is regular, thus

$$L \cap L(a^*b^*c^*) = \{a^nb^nc^n \mid n \ge 0\}$$

would be context-free. However, we know that it is not.

Contradiction. Thus *L* is not context-free.

Decidability

Basic Questions about Context-Free Grammars

Given context-free grammar G and H.

Which of the following questions are decidable?

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is *L*(*G*) empty?
- **3**. Does $L(G) = \Sigma^*$ hold ?
- 4. Does L(G) contain a palindrome $(w = w^R)$?
- 5. Does L(G) = L(H) hold?
- 6. Is $L(G) \cap L(H)$ empty?

Only the first two questions are decidable.

Remove all λ and unit productions.

- 1. { $v \mid S \Rightarrow^* v$, $|v| \le |w|$ } can be computed in finite time.
- 2. L(G) is empty \iff starting variable is useless.

Surprisingly all other questions are undecidable.