Automata Theory :: Properties of Context-Free Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$-1L_2$$

$$L_1^R$$

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

for i = 1, 2.

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

 L_1^R

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

for i = 1, 2. Let G_1 and G_2 have no variables in common.

 $\blacksquare L_1 \cup L_2$:

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

for i = 1, 2. Let G_1 and G_2 have no variables in common.

■ $L_1 \cup L_2$: Add rules $S \to S_1 \mid S_2$, and pick S as start variable.

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

- **L**₁ \cup L_2 : Add rules $S \rightarrow S_1 \mid S_2$, and pick S as start variable.
- \blacksquare L_1L_2 :

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

- **L**₁ \cup L_2 : Add rules $S \rightarrow S_1 \mid S_2$, and pick S as start variable.
- L_1L_2 : Add $S \to S_1S_2$, and pick S as start variable.

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

- **L**₁ \cup L_2 : Add rules $S \rightarrow S_1 \mid S_2$, and pick S as start variable.
- L_1L_2 : Add $S \to S_1S_2$, and pick S as start variable.
- L*:

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

- **L**₁ \cup L_2 : Add rules $S \rightarrow S_1 \mid S_2$, and pick S as start variable.
- **L**₁L₂: Add $S \rightarrow S_1 S_2$, and pick S as start variable.
- L_1^* : Add $S \to S_1 S \mid \lambda$, and pick S as start variable.

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$
 $L_1 L_2$

$$L_1L_2$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

- **L**₁ \cup L_2 : Add rules $S \rightarrow S_1 \mid S_2$, and pick S as start variable.
- **L**₁L₂: Add $S \rightarrow S_1 S_2$, and pick S as start variable.
- L_1^* : Add $S \to S_1 S \mid \lambda$, and pick S as start variable.
- *L*^R:

Theorem

If L_1 and L_2 are context-free, then also

$$L_1 \cup L_2$$

$$L_1L_2$$

$$L_1^*$$

$$L_1^R$$

Proof.

Let G_i be a context-free grammar with start variable S_i s.t.

$$L_i = L(G_i)$$

- $L_1 \cup L_2$: Add rules $S \to S_1 \mid S_2$, and pick S as start variable.
- L_1L_2 : Add $S \to S_1S_2$, and pick S as start variable.
- L_1^* : Add $S \to S_1 S \mid \lambda$, and pick S as start variable.
- **L**₁^R: Reverse all rules $(x \to y \text{ becomes } x^R \to y^R)$.

The intersection $L_1 \cap L_2$ is not always context-free. (for context free languages L_1 and L_2)

The intersection $L_1 \cap L_2$ is not always context-free. (for context free languages L_1 and L_2)

The languages L_1 and L_2 are context-free:

$$L_{1} = \{ a^{n}b^{n}c^{m} \mid n \geq 0 \land m \geq 0 \}$$

$$L_{2} = \{ a^{n}b^{m}c^{m} \mid n \geq 0 \land m \geq 0 \}$$

The intersection $L_1 \cap L_2$ is not always context-free. (for context free languages L_1 and L_2)

The languages L_1 and L_2 are context-free:

$$L_1 = \{ a^n b^n c^m \mid n \ge 0 \land m \ge 0 \}$$

$$L_2 = \{ a^n b^m c^m \mid n \ge 0 \land m \ge 0 \}$$

However $L_1 \cap L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$ is **not** context-free.

The intersection $L_1 \cap L_2$ is not always context-free. (for context free languages L_1 and L_2)

The languages L_1 and L_2 are context-free:

$$L_1 = \{ a^n b^n c^m \mid n \ge 0 \land m \ge 0 \}$$

$$L_2 = \{ a^n b^m c^m \mid n \ge 0 \land m \ge 0 \}$$

However $L_1 \cap L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$ is **not** context-free.

Also L_1 and $L_1 \setminus L_2$ are not always context-free. (for context free languages L_1 and L_2)

The intersection $L_1 \cap L_2$ is not always context-free. (for context free languages L_1 and L_2)

The languages L_1 and L_2 are context-free:

$$L_1 = \{ a^n b^n c^m \mid n \ge 0 \land m \ge 0 \}$$

$$L_2 = \{ a^n b^m c^m \mid n \ge 0 \land m \ge 0 \}$$

However $L_1 \cap L_2 = \{ a^n b^n c^n \mid n \ge 0 \}$ is **not** context-free.

Also L_1 and $L_1 \setminus L_2$ are not always context-free. (for context free languages L_1 and L_2)

Namely, we have:

$$L_1\cap L_2=\overline{\overline{L_1}\cup\overline{L_2}}\qquad \qquad \overline{L_1}=\Sigma^*\setminus L_1$$

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Construction

Let

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an NPDA accepting L_1 , and
- $N = (R, \Sigma, \epsilon, r_0, G)$ a DFA accepting L_2 .

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Construction

Let

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an NPDA accepting L_1 , and
- \blacksquare $N = (R, \Sigma, \epsilon, r_0, G)$ a DFA accepting L_2 .

We construct an NPDA $\widehat{M} = (\widehat{Q}, \Sigma, \Gamma, \widehat{\delta}, \widehat{q}_0, \mathbf{z}, \widehat{F})$ where

$$\widehat{Q} = Q \times R$$
 \widehat{q}_0

$$\widehat{Q} = Q \times R$$
 $\widehat{q}_0 = (q_0, r_0)$ $\widehat{F} = F \times G$

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Construction

Let

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an NPDA accepting L_1 , and
- $N = (R, \Sigma, \epsilon, r_0, G)$ a DFA accepting L_2 .

We construct an NPDA $\widehat{M} = (\widehat{Q}, \Sigma, \Gamma, \widehat{\delta}, \widehat{q}_0, \mathbf{z}, \widehat{F})$ where

$$\widehat{Q} = Q \times R$$
 $\widehat{q}_0 = (q_0, r_0)$ $\widehat{F} = F \times G$

The transition function $\hat{\delta}$ is defined by:

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Construction

Let

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an NPDA accepting L_1 , and
- $N = (R, \Sigma, \epsilon, r_0, G)$ a DFA accepting L_2 .

We construct an NPDA $\widehat{M} = (\widehat{Q}, \Sigma, \Gamma, \widehat{\delta}, \widehat{q}_0, \mathbf{z}, \widehat{F})$ where

$$\widehat{Q} = Q \times R$$
 $\widehat{q}_0 = (q_0, r_0)$ $\widehat{F} = F \times G$

The transition function $\hat{\delta}$ is defined by:

$$\widehat{\mathbf{M}}: (\mathbf{q}, r) \xrightarrow{\mathbf{a}[\mathbf{b}/\mathbf{v}]} (\mathbf{q}', r') \text{ if } \mathbf{M}: \mathbf{q} \xrightarrow{\mathbf{a}[\mathbf{b}/\mathbf{v}]} \mathbf{q}' \text{ and } \mathbf{N}: r \xrightarrow{\mathbf{a}} r'$$

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Construction

Let

- $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an NPDA accepting L_1 , and
- $N = (R, \Sigma, \epsilon, r_0, G)$ a DFA accepting L_2 .

We construct an NPDA $\widehat{M} = (\widehat{Q}, \Sigma, \Gamma, \widehat{\delta}, \widehat{q}_0, \mathbf{z}, \widehat{F})$ where

$$\widehat{Q} = Q \times R$$
 $\widehat{q}_0 = (q_0, r_0)$ $\widehat{F} = F \times G$

The transition function $\hat{\delta}$ is defined by:

- $\widehat{\mathbf{M}}: (\mathbf{q}, r) \xrightarrow{\mathbf{a}[\mathbf{b}/\mathbf{v}]} (\mathbf{q}', r') \text{ if } \mathbf{M}: \mathbf{q} \xrightarrow{\mathbf{a}[\mathbf{b}/\mathbf{v}]} \mathbf{q}' \text{ and } \mathbf{N}: r \xrightarrow{\mathbf{a}} r'$
- $\widehat{\mathbf{M}}: (\mathbf{q}, r) \xrightarrow{\lambda[\mathbf{b}/\mathbf{v}]} (\mathbf{q}', r) \text{ if } \mathbf{M}: \mathbf{q} \xrightarrow{\lambda[\mathbf{b}/\mathbf{v}]} \mathbf{q}'$

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \cap L_2$ is context-free.

Construction

Let

- \blacksquare $M = (Q, \Sigma, \Gamma, \delta, q_0, z, F)$ be an NPDA accepting L_1 , and
- $N = (R, \Sigma, \epsilon, r_0, G)$ a DFA accepting L_2 .

We construct an NPDA $\widehat{M} = (\widehat{Q}, \Sigma, \Gamma, \widehat{\delta}, \widehat{q}_0, \mathbf{z}, \widehat{F})$ where

$$\widehat{Q} = Q \times R$$
 $\widehat{q}_0 = (q_0, r_0)$ $\widehat{F} = F \times G$

The transition function $\hat{\delta}$ is defined by:

- $\widehat{\mathbf{M}}: (q,r) \xrightarrow{\mathbf{a}[\mathbf{b}/\mathbf{v}]} (q',r') \text{ if } \mathbf{M}: q \xrightarrow{\mathbf{a}[\mathbf{b}/\mathbf{v}]} q' \text{ and } \mathbf{N}: r \xrightarrow{\mathbf{a}} r'$
- $\widehat{M}: (q,r) \xrightarrow{\lambda[b/v]} (q',r) \text{ if } M: q \xrightarrow{\lambda[b/v]} q'$

Then $L(\widehat{M}) = L(M) \cap L(N)$.

Question

Question

Why does the construction not work for two NPDA's? (instead of an NPDA and a DFA)

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \setminus L_2$ is context-free.

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \setminus L_2$ is context-free.

Proof.

 $\overline{L_2}$ is regular, thus $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ is context-free.

Theorem

If L_1 is context-free and L_2 regular, then $L_1 \setminus L_2$ is context-free.

Proof.

 $\overline{L_2}$ is regular, thus $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ is context-free.

$$L_2 \setminus L_1$$
 is **not** always context-free. Namely

$$\overline{L_1} = \Sigma^* \backslash L_1$$

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

 $\{a^nb^n \mid n \ge 1000\}$ is context-free.

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

 $\{a^nb^n \mid n \ge 1000\}$ is context-free.

Show that the language

$$L = \{ w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) = n_c(w) \}$$

is **not** context-free.

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

 $\{a^nb^n\mid n\geq 1000\}$ is context-free.

Show that the language

$$L = \{ w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) = n_c(w) \}$$

is not context-free.

For a contradiction, assume *L* was context-free.

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

$$\{a^nb^n \mid n \ge 1000\}$$
 is context-free.

Show that the language

$$L = \{ w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) = n_c(w) \}$$

is not context-free.

For a contradiction, assume *L* was context-free.

The language $L(a^*b^*c^*)$ is regular, thus

$$L \cap L(a^*b^*c^*) = \{ a^nb^nc^n \mid n \ge 0 \}$$

would be context-free.

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

$$\{a^nb^n \mid n \ge 1000\}$$
 is context-free.

Show that the language

$$L = \{ w \in \{a, b, c\}^* \mid n_a(w) = n_b(w) = n_c(w) \}$$

is not context-free.

For a contradiction, assume L was context-free.

The language $L(a^*b^*c^*)$ is regular, thus

$$L \cap L(a^*b^*c^*) = \{ a^nb^nc^n \mid n \ge 0 \}$$

would be context-free. However, we know that it is not.

 $L \setminus \{\lambda\}$ is context-free for every context-free language L.

 $\{a^nb^n\mid n\geq 1000\}$ is context-free.

Show that the language

$$L = \{ w \in \{a,b,c\}^* \mid n_a(w) = n_b(w) = n_c(w) \}$$
 is **not** context-free.

For a contradiction, assume *L* was context-free.

The language $L(a^*b^*c^*)$ is regular, thus

$$L \cap L(a^*b^*c^*) = \{ a^nb^nc^n \mid n \ge 0 \}$$

would be context-free. However, we know that it is not.

Contradiction. Thus *L* is not context-free.

Given context-free grammar G and H.

Given context-free grammar *G* and *H*.

Which of the following questions are decidable?

1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?

Given context-free grammar *G* and *H*.

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is *L*(*G*) empty?

Given context-free grammar *G* and *H*.

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is *L*(*G*) empty?
- 3. Does $L(G) = \Sigma^*$ hold?

Given context-free grammar *G* and *H*.

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is *L*(*G*) empty?
- 3. Does $L(G) = \Sigma^*$ hold?
- 4. Does L(G) contain a palindrome ($w = w^R$)?

Given context-free grammar *G* and *H*.

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is *L*(*G*) empty?
- 3. Does $L(G) = \Sigma^*$ hold?
- 4. Does L(G) contain a palindrome ($w = w^R$)?
- 5. Does L(G) = L(H) hold?

Given context-free grammar *G* and *H*.

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is *L*(*G*) empty?
- 3. Does $L(G) = \Sigma^*$ hold?
- 4. Does L(G) contain a palindrome ($w = w^R$)?
- 5. Does L(G) = L(H) hold?
- 6. Is $L(G) \cap L(H)$ empty?

Given context-free grammar *G* and *H*.

Which of the following questions are **decidable**?

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is *L*(*G*) empty?
- 3. Does $L(G) = \Sigma^*$ hold?
- 4. Does L(G) contain a palindrome $(w = w^R)$?
- 5. Does L(G) = L(H) hold?
- **6.** Is $L(G) \cap L(H)$ empty?

Only the first two questions are decidable.

Given context-free grammar *G* and *H*.

Which of the following questions are **decidable**?

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is L(G) empty?
- 3. Does $L(G) = \Sigma^*$ hold?
- 4. Does L(G) contain a palindrome $(w = w^R)$?
- 5. Does L(G) = L(H) hold?
- 6. Is $L(G) \cap L(H)$ empty?

Only the first two questions are decidable.

Remove all λ and unit productions.

- 1. $\{v \mid S \Rightarrow^* v, |v| \le |w|\}$ can be computed in finite time.
- 2. L(G) is empty \iff starting variable is useless.

Given context-free grammar *G* and *H*.

Which of the following questions are **decidable**?

- 1. Given $w \in \Sigma^*$, do we have $w \in L(G)$?
- 2. Is L(G) empty?
- 3. Does $L(G) = \Sigma^*$ hold?
- 4. Does L(G) contain a palindrome $(w = w^R)$?
- 5. Does L(G) = L(H) hold?
- 6. Is $L(G) \cap L(H)$ empty?

Only the first two questions are decidable.

Remove all λ and unit productions.

- 1. $\{v \mid S \Rightarrow^* v, |v| \le |w|\}$ can be computed in finite time.
- 2. L(G) is empty \iff starting variable is useless.

Surprisingly all other questions are undecidable.