Automata Theory :: Pumping Lemma for Context-Free Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Pumping Lemma for Context-Free Languages (1961)

Theorem

Let *L* be a context-free language.

There exists m > 0 such that for every word $w \in L$ with $|w| \ge m$:

W = UVXYZ

with $|vxy| \le m$ and $|vy| \ge 1$, and $uv^i xy^i z \in L$ for every $i \ge 0$.

Proof

Let *G* be a context-free grammar with $L(G) = L \setminus \{\lambda\}$

- with k variables, and
- without λ and unit productions.

Let $m = 1 + \text{maximum number of leaves of derivation trees of depth} \le (k + 2)$.

continued on next slide...

Pumping Lemma for Context-Free Languages (1961)

Let $w \in L$ with $|w| \ge m$. Consider a derivation tree for w.

There is a path of length $\geq k + 2$. Consider the longest path.

As there are only k variables, there must be a variable A that occurs twice among the last k + 1 variable nodes of the path.

We have w = uvxyz with $S \Rightarrow^* uAz$ $A \Rightarrow^+ vAy$ $A \Rightarrow^+ x$ Hence $S \Rightarrow^+ uv^i xy^i z$ for every i > 0.

Then

|*vxy*| ≤ *m* as the subtree generating *vxy* has depth ≤ *k* + 2,
 |*vy*| ≥ 1, since there are no λ and unit productions.

Using the Pumping Lemma

Attention

A contradiction of the pumping property for specific values of m, or of u, v, x, y, z, is not sufficient!

Pumping lemma as formula (note the quantifiers):

$$\exists m > 0.$$

$$\forall w \in L \text{ with } |w| \ge m.$$

$$\exists u, v, x, y, z \text{ with } w = uvxyz, |vxy| \le m, |vy| \ge 1.$$

$$\forall i \ge 0. uv^{i}xy^{i}z \in L$$

To contradict the pumping property, we prove the negation:

$$\forall m > 0. \\ \exists w \in L \text{ with } |w| \ge m. \\ \forall u, v, x, y, z \text{ with } w = uvxyz, |vxy| \le m, |vy| \ge 1. \\ \exists i \ge 0. uv^i xy^i z \notin L$$

Pumping Lemma as a Game

To contradict the pumping property, we prove the negation:

 $\forall m > 0. \\ \exists w \in L \text{ with } |w| \ge m. \\ \forall u, v, x, y, z \text{ with } w = uvxyz, |vxy| \le m, |vy| \ge 1. \\ \exists i \ge 0. uv^i xy^i z \notin L$

Pumping Lemma as a Game

Given is *L*. We want to prove that *L* is not context-free.

- 1. Opponent picks *m*.
- 2. We choose a word $w \in L$ with $|w| \ge m$.
- 3. Opponent picks u, v, x, y, zwith w = uvxyz, $|vxy| \le m$ and $|vy| \ge 1$.

4. If we can find $i \ge 0$ such that $uv^i xy^i z \notin L$, then we win. If we can always win, then *L* has no pumping property!

Example

Assume that $L = \{ a^n b^n c^n \mid n \ge 0 \}$ was context-free.

According to the pumping lemma there is m > 0 such that $a^m b^m c^m = uvxyz$

with $|vxy| \le m$, $|vy| \ge 1$, and $uv^i xy^i z \in L$ for every $i \ge 0$. Since $|vxy| \le m$, $vy = a^j b^k$ or $vy = b^j c^k$ for some $j, k \ge 0$. Since $|vy| \ge 1$ we have $j + k \ge 1$. Then $uv^2 xy^2 z$ does not contain equally many *a*'s, *b*'s and *c*'s.

Contradiction, thus *L* is not context-free.

Intuitively:

- opponent picks *m*,
- we pick $w = a^m b^m c^m$,
- opponent u, v, x, y, z

Show that $L = \{a^n b^n \mid n \ge 0\}$ has the pumping property. Let m = 2. Every word $w = a^n b^n$ with $|w| \ge m$ can be split $a^n b^n = uvxyz$ $u = a^{n-1}$ v = a $x = \lambda$ y = b $z = b^{n-1}$ We have $|vxy| \le m$, $|vy| \ge 1$ and $uv^i xy^i z = a^{n-1+i} b^{n-1+i} \in L$

for every $i \ge 0$. Thus the language has the pumping property.

Exercises (2)

Show $L = \{ w \in \{a, b\}^* \mid w = w^R \}$ for has the pumping property.

Let m = 3. Every word $w \in L$ with $|w| \ge m$ has the form $w = sctcs^R$

where $s \in \{a, b\}^*$, $c \in \{a, b\}$ and $t \in \{a, b, \lambda\}$. Thus

w = uvxyz u = s v = c x = t y = c $z = s^R$

We have $|vxy| \le m$, $|vy| \ge 1$ and

$$uv^i xy^i z = sc^i tc^i s^R \in L$$

for every $i \ge 0$. Thus the language has the pumping property.

Show that *L* also has the pumping property for m = 2. **Hint:** distinguish *w* of even and odd length when splitting.

Exercises (3)

Show that $L = \{ ww | w \in \{a, b\}^* \}$ is not context-free.

Assume that *L* was context-free.

According to the pumping lemma there is m > 0 such that $a^m b^m a^m b^m = uvxyz$

with $|vxy| \le m$, $|vy| \ge 1$, and $uv^i xy^i z \in L$ for every $i \ge 0$. Since $|vxy| \le m$, $vy = a^j b^k$ or $vy = b^k a^j$ for some $j, k \ge 0$. Since $|vy| \ge 1$ we have $j + k \ge 1$.

Since $|vxy| \le m$, we have:

- If |u| < m, then $uv^0 xy^0 z = a^{m-j}b^{m-k}a^mb^m \notin L$.
- If $m \le |u| < 2m$, then $uv^0 xy^0 z = a^m b^{m-k} a^{m-j} b^m \notin L$.
- If $2m \le |u|$, then $uv^0 xy^0 z = a^m b^m a^{m-j} b^{m-k} \notin L$.

Contradiction in each case! Thus *L* is not context-free.