Automata Theory ::
 Pumping Lemma for Context-Free Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Pumping Lemma for Context-Free Languages (1961)

Theorem

Let L be a context-free language.
There exists $m>0$ such that for every word $w \in L$ with $|w| \geq m$:

$$
w=u v x y z
$$

with $|v x y| \leq m$ and $|v y| \geq 1$, and $u v^{i} x y^{i} z \in L$ for every $i \geq 0$.

Proof

Let G be a context-free grammar with $L(G)=L \backslash\{\lambda\}$

- with k variables, and
- without λ and unit productions.

Let $m=1+$ maximum number of leaves of derivation trees of depth $\leq(k+2)$.

Pumping Lemma for Context-Free Languages (1961)

Let $w \in L$ with $|w| \geq m$. Consider a derivation tree for w.
There is a path of length $\geq k+2$. Consider the longest path.
As there are only k variables, there must be a variable A that occurs twice among the last $k+1$ variable nodes of the path.

We have $w=u v x y z$ with

- $S \Rightarrow^{*} u A z$
- $A \Rightarrow^{+} v A y$
- $A \Rightarrow^{+} x$

Hence
■ $S \Rightarrow^{+} u v^{i} x y^{i} z$ for every $i \geq 0$.
Then
■ $|v x y| \leq m$ as the subtree generating $v x y$ has depth $\leq k+2$,

- $|v y| \geq 1$, since there are no λ and unit productions.

Using the Pumping Lemma

Attention

A contradiction of the pumping property for specific values of m, or of u, v, x, y, z, is not sufficient!

Pumping lemma as formula (note the quantifiers):

$$
\begin{aligned}
& \exists m>0 \text {. } \\
& \quad \forall w \in L \text { with }|w| \geq m . \\
& \quad \exists u, v, x, y, z \text { with } w=u v x y z,|v x y| \leq m,|v y| \geq 1 . \\
& \quad \forall i \geq 0 . u v^{i} x y^{i} z \in L
\end{aligned}
$$

To contradict the pumping property, we prove the negation:

$$
\begin{aligned}
& \forall m>0 . \\
& \quad \exists w \in L \text { with }|w| \geq m . \\
& \quad \forall u, v, x, y, z \text { with } w=u v x y z,|v x y| \leq m,|v y| \geq 1 . \\
& \quad \exists i \geq 0 . u v^{i} x y^{i} z \notin L
\end{aligned}
$$

Pumping Lemma as a Game

To contradict the pumping property, we prove the negation:

$$
\begin{aligned}
& \forall m>0 . \\
& \quad \exists w \in L \text { with }|w| \geq m . \\
& \quad \forall u, v, x, y, z \text { with } w=u v x y z,|v x y| \leq m,|v y| \geq 1 . \\
& \quad \exists i \geq 0 . u v^{i} x y^{i} z \notin L
\end{aligned}
$$

Pumping Lemma as a Game

Given is L. We want to prove that L is not context-free.

1. Opponent picks m.
2. We choose a word $w \in L$ with $|w| \geq m$.
3. Opponent picks u, v, x, y, z with $w=u v x y z,|v x y| \leq m$ and $|v y| \geq 1$.
4. If we can find $i \geq 0$ such that $u v^{i} x y^{i} z \notin L$, then we win.

If we can always win, then L has no pumping property!

Example

Assume that $L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ was context-free.
According to the pumping lemma there is $m>0$ such that

$$
a^{m} b^{m} c^{m}=u v x y z
$$

with $|v x y| \leq m,|v y| \geq 1$, and $u v^{i} x y^{i} z \in L$ for every $i \geq 0$.
Since $|v x y| \leq m, v y=a^{j} b^{k}$ or $v y=b^{j} c^{k}$ for some $j, k \geq 0$.
Since $|v y| \geq 1$ we have $j+k \geq 1$.
Then $u v^{2} x y^{2} z$ does not contain equally many a 's, b 's and c 's.
Contradiction, thus L is not context-free.

Intuitively:

- opponent picks m,

■ we pick $w=a^{m} b^{m} c^{m}$,
■ opponent u, v, x, y, z

Exercises (1)

Show that $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ has the pumping property.
Let $m=2$. Every word $w=a^{n} b^{n}$ with $|w| \geq m$ can be split

$$
a^{n} b^{n}=u v x y z \quad u=a^{n-1} \quad v=a \quad x=\lambda \quad y=b \quad z=b^{n-1}
$$

We have $|v x y| \leq m,|v y| \geq 1$ and

$$
u v^{i} x y^{i} z=a^{n-1+i} b^{n-1+i} \in L
$$

for every $i \geq 0$. Thus the language has the pumping property.

Exercises (2)

Show $L=\left\{w \in\{a, b\}^{*} \mid w=w^{R}\right\}$ for has the pumping property.

Let $m=3$. Every word $w \in L$ with $|w| \geq m$ has the form

$$
w=\operatorname{sctcs}^{R}
$$

where $s \in\{a, b\}^{*}, c \in\{a, b\}$ and $t \in\{a, b, \lambda\}$. Thus

$$
w=u v x y z \quad u=s \quad v=c \quad x=t \quad y=c \quad z=s^{R}
$$

We have $|v x y| \leq m,|v y| \geq 1$ and

$$
u v^{i} x y^{i} z=s c^{i} t c^{i} s^{R} \in L
$$

for every $i \geq 0$. Thus the language has the pumping property.
Show that L also has the pumping property for $m=2$.
Hint: distinguish w of even and odd length when splitting.

Exercises (3)

Show that $L=\left\{w w \mid w \in\{a, b\}^{*}\right\}$ is not context-free.
Assume that L was context-free.
According to the pumping lemma there is $m>0$ such that

$$
a^{m} b^{m} a^{m} b^{m}=u v x y z
$$

with $|v x y| \leq m,|v y| \geq 1$, and $u v^{i} x y^{i} z \in L$ for every $i \geq 0$.
Since $|v x y| \leq m, v y=a^{j} b^{k}$ or $v y=b^{k} a^{j}$ for some $j, k \geq 0$.
Since $|v y| \geq 1$ we have $j+k \geq 1$.
Since $|v x y| \leq m$, we have:

- If $|u|<m$, then $u v^{0} x y^{0} z=a^{m-j} b^{m-k} a^{m} b^{m} \notin L$.
- If $m \leq|u|<2 m$, then $u v^{0} x y^{0} z=a^{m} b^{m-k} a^{m-j} b^{m} \notin L$.
- If $2 m \leq|u|$, then $u v^{0} x y^{0} z=a^{m} b^{m} a^{m-j} b^{m-k} \notin L$.

Contradiction in each case! Thus L is not context-free.

