\begin{frame}{Pushdown Automata}
\begin{block}{}
A \emph{nondeterministic pushdown automaton} (\emph{NPDA}) is a tuple\vspace{-0.5ex}
\begin{talign}
M = (Q,\Sigma,\Gamma,\delta,q_0,z,F)
\end{talign}
\vspace{-3.5ex}
\begin{itemize}\setlength{\itemsep}{-0.5ex}
\item $Q$ is a finite set of states
\item $\Sigma$ is a finite input alphabet
\item \alert{$\Gamma$ is a finite stack alphabet}
\item \alert{$\delta : Q \times (\Sigma \cup \{\, \lambda \,\}) \times \alert{\Gamma} \to 2^{Q \times \alert{\Gamma^*}}$}
the transition function, where $\delta(q,\alpha,b)$ is always finite
\item $q_0 \in Q$ the starting state
\item \alert{$\alert{z} \in \Gamma$ the stack starting symbol}
\item $F \subseteq Q$ a set of final states
\end{itemize}
\end{block}
Initially, the stack content is $z$.
\pause
\begin{goal}{}
If $(q',v) \in \delta(q,\alpha,b)$, this means that
\begin{itemize}
\vspace{-0.25ex}
\item from state \alert{$q$} with input \alert{$\alpha w$} and stack $\alert{b}u$
\vspace{-0.5ex}
\end{itemize}
the automaton can do a transition to
\begin{itemize}
\vspace{-0.25ex}
\item state \alert{$q'$} with input \alert{$w$} and stack $\alert{v}u$.
\vspace{-0.25ex}
\end{itemize}
\end{goal}
\end{frame}