Automata Theory :: LL Parsing

Jörg Endrullis

Vrije Universiteit Amsterdam

Top-down Parsing

Top-down parsing tries to derive the input word from the starting variable *S*.

Simple leftmost strategy:

- Always expand the leftmost variable A. (Replace A by u if there is a rule $A \rightarrow u$.)
- Backtrack when a mismatch with the input string is found.
 (Then try another rule.)

Disadvantage: backtracking is expensive and difficult.

LL Parsing

LL parsing

Parsing top-down with a leftmost strategy.

Backtracking is not allowed.

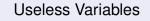
LL parsing does not work for every context-free grammar.

Starting point is a context-free grammar G = (V, T, S, P):

- without useless variables
- λ-productions and unit productions are allowed (elimination often increases the size of the grammar)

Steps of LL parsing:

- Construct sets First(A) and Follow(A) for every variable A.
- Construct a parsing table.
- Parse the input word using the parsing table.



Removal of Useless Variables

A variable *A* is **useless** for a context-free grammar if there exists no derivation of the form

$$S \Rightarrow^* uAv \Rightarrow^+ w$$
 with $w \in T^*$.

Removing production rules that contain a useless variable from a grammar does not change the generated language.

$$S
ightarrow aSb \mid BC \mid \lambda \qquad A
ightarrow Sb \qquad B
ightarrow a \qquad C
ightarrow C$$

Which variables are useless?

- A because there is no derivation $S \Rightarrow^* uAv$
- C because there is no derivation $C \Rightarrow^* w$ with $w \in T^*$
- B because B can be reached only together with C

The resulting grammar is $S \rightarrow aSb \mid \lambda$.

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?

Construction

A variable *A* is called **productive** if $A \Rightarrow^+ w$ with $w \in T^*$.

We determine all productive variables:

If A → y is a rule and all variables in y are productive, then A is productive.

Remove all rules that contain a non-productive variable.

We determine all reachable variables as follows:

- S is reachable.
 - If $A \rightarrow y$ and A is reachable, then so are all variables in y.

Remove all rules that contain a non-reachable variable.

A variable is useless if it is not in one of the remaining rules.

Removal of Useless Variables

$$S
ightarrow aSb \mid BC \mid \lambda \qquad A
ightarrow Sb \qquad B
ightarrow a \qquad C
ightarrow C$$

Which variables are non-productive?

C is not productive

We remove all rules containing non-productive variables:

$$S \rightarrow aSb \mid \lambda$$
 $A \rightarrow Sb$ $B \rightarrow a$

Which variables are reachable from S?

only *S* is reachable

We remove all rules containing non-reachable variables:

$$S \rightarrow aSb \mid \lambda$$

Hence only *S* is useful, the variables *A*, *B*, *C* are not useful.

First(A)

We consider the first terminal letters derivable from a word:

$$\mathsf{First}(w) = \{ a \in T \mid w \Rightarrow^* a \dots \} \cup \{ \lambda \mid w \Rightarrow^* \lambda \}$$

Algorithm

Let PreFirst(w) be the smallest set such that:

- w ∈ PreFirst(w)
- $a \in \mathsf{PreFirst}(w)$ if $av \in \mathsf{PreFirst}(w)$
- $B \in \text{PreFirst}(w)$ if $Bv \in \text{PreFirst}(w)$
- $v \in \mathsf{PreFirst}(w)$ if $Bv \in \mathsf{PreFirst}(w)$ and B erasable
- $v \in \mathsf{PreFirst}(w)$ for every $A \in \mathsf{PreFirst}(w)$ and rule $A \to v$

Then First(w) consists of

- all terminal letters $a \in T$ such that $a \in \text{PreFirst}(w)$, and
- λ if $w = A_1 A_2 \dots A_n$ for erasable variables A_1, \dots, A_n .

Exercise

$$S \rightarrow AAc$$
 $A \rightarrow Ba \mid \lambda$ $B \rightarrow Ab \mid d$

The erasable variables ($V \Rightarrow^+ \lambda$) are: A.

We determine PreFirst(A), PreFirst(B) and PreFirst(S):

$$\mathsf{PreFirst}(A) = \{ A, \underbrace{Ba}_{\mathsf{from}\ A}, \underbrace{\lambda}_{\mathsf{from}\ A}, \underbrace{B}_{\mathsf{from}\ B}, \underbrace{Ab}_{\mathsf{from}\ B}, \underbrace{d}_{\mathsf{from}\ A}, \underbrace{b}_{\mathsf{from}\ Ab} \}$$

$$PreFirst(B) = \{B, \underbrace{Ab}_{from B}, \underbrace{d}_{from Ab}, \underbrace{b}_{from Ab}, \underbrace{A}_{from Ab}\} \cup PreFirst(A)$$
$$= \{A, Ba, \lambda, B, Ab, d, b\}$$

$$= \{A, Ba, \lambda, B, Ab, d, b\}$$

$$\mathsf{PreFirst}(S) = \{S, AAc, Ac, C, A\} \cup \mathsf{PreFirst}(A)$$

from S from AAc from Ac from AAc
$$= \{ S, AAc, Ac, c, A, Ba, \lambda, B, Ab, d, b \}$$

Thus we get

$$\mathsf{First}(A) = \{\, b, d, \lambda \,\} \quad \mathsf{First}(B) = \{\, b, d \,\} \quad \mathsf{First}(S) = \{\, b, c, d \,\}$$

Follow(A)

The sets First(A) are not yet sufficient for 'predictive' parsing, if there are derivations $A \Rightarrow^+ \lambda$.

We consider the terminal letters that can follow a variable:

$$Follow(A) = \{ a \in T \mid S \Rightarrow^* \dots Aa \dots \}$$

Intuition: $a \in Follow(A)$ if A can be followed by a in a derivation.

We use \$ as a special 'end of word' symbol.

Algorithm

- Follow(S) ⊇ {\$}
- Follow(A) \supseteq First(w) \ { λ } for every rule $B \rightarrow vAw$
- Follow(A) \supseteq Follow(B) for rules $B \rightarrow \nu A w$ with $\lambda \in \text{First}(w)$

Example

- Follow(S) \supseteq {\$}
- Follow(A) \supseteq First(w) $\setminus \{\lambda\}$ for every rule $B \rightarrow vAw$
- Follow(A) \supseteq Follow(B) for rules $B \rightarrow \nu A w$ with $\lambda \in \mathsf{First}(w)$

If $C \rightarrow AB$, then:

- First(B) \subseteq Follow(A)

 Example: $C \Rightarrow AB \Rightarrow^* Aaw$ if $B \rightarrow aw$
- Follow(C) \subseteq Follow(B)

 Example: $S \Rightarrow Ca \Rightarrow ABa$ if $S \rightarrow Ca$
- Follow(C) \subseteq Follow(A) if $B \Rightarrow^* \lambda$ Example: $S \Rightarrow Ca \Rightarrow ABa \Rightarrow Aa$ if $S \rightarrow Ca$ and $B \rightarrow \lambda$

Exercise

- Follow(S) ⊇ { \$ }
- Follow(A) ⊇ First(w) \ {λ} for every rule B → vAw
 Follow(A) ⊇ Follow(B) for rules B → vAw with λ ∈ First(w)

$$S o Dc$$
 $A o Ba \mid \lambda$ $D o AA$ $B o Ab \mid d$

We have

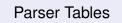
$$First(S) = \{b, c, d\} \qquad First(A) = \{\lambda, b, d\}$$

$$First(D) = \{\lambda, b, d\} \qquad First(B) = \{b, d\}$$

Determine Follow(S), Follow(D), Follow(A), Follow(B):

Follow(
$$S$$
) \supseteq {\$}
Follow(D) \supseteq { c }

Follow(B) $\supseteq \{c\}$ Follow(A) $\supseteq \{$ (First(A) $\setminus \{\lambda\}$) $\cup \{b\} \cup$ Follow(D) $\supseteq \{b, c, d\}$ Follow(B) $\supseteq \{a\}$



Parser Tables

The parser table for a context-free grammar is a table with

- lacksquare columns indexed by terminals $T \cup \{\$\}$,
- rows indexed by variables V,

At place $[a \in T \cup \{\$\}, B \in V]$ it contains rules $B \to u$ for which

- $a \in First(u)$, or (never the case for a = \$)
- $\lambda \in First(u)$ and $a \in Follow(B)$.

$$S \rightarrow aSb \mid \lambda$$

We have

- First(aSb) = {a}, First(λ) = { λ }, First(S) = { λ , a}
- $\bullet \mathsf{Follow}(\mathcal{S}) = \{b,\$\},\$

Thus the parser table is:

	а	b	\$
S	S o aSb	$S \rightarrow \lambda$	$S \rightarrow \lambda$

LL(1) Grammars and Parsing

A grammar is LL(1) if its parser table contains in ever cell $[a \in T \cup \{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an LL(1)-grammar and parsing table.

To parse $a_1 \cdots a_n$, we start with $\langle S\$, a_1 \cdots a_n \$ \rangle$.

From a state $\langle v, w \rangle$ we can do the following steps:

- ⟨av', aw'⟩ becomes ⟨v', w'⟩
- $\langle Bv', aw' \rangle$ becomes $\langle uv', aw' \rangle$ if $B \rightarrow u$ at position [a, B]
- $\langle Bv', \$ \rangle$ becomes $\langle v', \$ \rangle$ if $B \rightarrow u$ at position [\$, B]
- \(\\$, \\$ \) results in accept
- In all other cases, ⟨v, w⟩ results in reject!

Example

$$S \rightarrow aSb \mid \lambda$$

The parser table is:

$$\frac{a \qquad b \qquad \$}{S \mid S \to aSb \quad S \to \lambda \quad S \to \lambda}$$

$$\langle S\$, ab\$ \rangle \to \langle aSb\$, ab\$ \rangle \to \langle Sb\$, b\$ \rangle \to \langle b\$, b\$ \rangle$$

$$\to \langle \$, \$ \rangle \quad \textbf{accept}$$

$$\langle S\$, abb\$ \rangle \to \langle aSb\$, abb\$ \rangle \to \langle Sb\$, bb\$ \rangle \to \langle b\$, bb\$ \rangle$$

$$\to \langle \$, b\$ \rangle \quad \textbf{reject}$$

$$\langle S\$, aab\$ \rangle \to \langle aSb\$, aab\$ \rangle \to \langle Sb\$, ab\$ \rangle \to \langle aSbb\$, ab\$ \rangle$$

$$\to \langle Sbb\$, b\$ \rangle \to \langle bb\$, b\$ \rangle \to \langle b\$, \$ \rangle \quad \textbf{reject}$$

JavaCC (Java Compiler Compiler) automatically generates a parser from an LL(1) grammar.

LL(k) Grammars

LL(k) Grammars

The class of LL(1) grammars is often to restrictive in practice. LL(1) parsers looks at 1 symbol to decide which rule to use.

An LL(k) parser looks k symbols ahead to choose the rule.

The parser table is constructed with k symbols look-ahead.

A grammar is LL(k) if this table has in every cell ≤ 1 rule.

LL(k) is strictly contained in LL(k + 1).

Disadvantage: size of the parser table grows exponential in k.

Exercises

Can ambiguous grammars be LL(k) for some $k \ge 1$?

Is the following grammar LL(k) for some $k \ge 1$?

$$\textbf{\textit{S}} \rightarrow \textbf{\textit{aSa}} \mid \lambda$$

Left Factorisation

Left factorisation: rewrite rules $A \rightarrow uv \mid uw \ (u \neq \lambda)$ into

$$A \rightarrow uB$$
 and $B \rightarrow v \mid w$

where *B* is a fresh variable.

After left factorisation we get: $S \rightarrow aA$ $A \rightarrow b \mid c$

The grammar $S \rightarrow aA$, $A \rightarrow b \mid c$ is LL(1):

	а	b	С	\$
S	$\mathcal{S} ightarrow aA$			
Α		A o b	A ightarrow c	