Automata Theory :: LL Parsing

Jörg Endrullis

Vrije Universiteit Amsterdam

Top-down Parsing

Top-down parsing tries to derive the input word from the starting variable S.

Top-down Parsing

Top-down parsing tries to derive the input word from the starting variable S.

Simple leftmost strategy:

- Always expand the leftmost variable A. (Replace A by u if there is a rule $A \rightarrow u$.)
- Backtrack when a mismatch with the input string is found. (Then try another rule.)

Top-down Parsing

Top-down parsing tries to derive the input word from the starting variable S.

Simple leftmost strategy:

- Always expand the leftmost variable A. (Replace A by u if there is a rule $A \rightarrow u$.)
- Backtrack when a mismatch with the input string is found. (Then try another rule.)

Disadvantage: backtracking is expensive and difficult.

LL Parsing

LL parsing

Parsing top-down with a leftmost strategy.
Backtracking is not allowed.
LL parsing does not work for every context-free grammar.

LL Parsing

LL parsing
Parsing top-down with a leftmost strategy.
Backtracking is not allowed.
LL parsing does not work for every context-free grammar.
Starting point is a context-free grammar $G=(V, T, S, P)$:

- without useless variables
- λ-productions and unit productions are allowed (elimination often increases the size of the grammar)

LL Parsing

LL parsing

Parsing top-down with a leftmost strategy.
Backtracking is not allowed.
LL parsing does not work for every context-free grammar.
Starting point is a context-free grammar $G=(V, T, S, P)$:

- without useless variables
- λ-productions and unit productions are allowed (elimination often increases the size of the grammar)

Steps of LL parsing:

- Construct sets First (A) and Follow (A) for every variable A.
- Construct a parsing table.
- Parse the input word using the parsing table.

Useless Variables

Removal of Useless Variables

A variable A is useless for a context-free grammar if there exists no derivation of the form

$$
S \Rightarrow^{*} u A v \Rightarrow^{+} w \quad \text { with } w \in T^{*}
$$

Removal of Useless Variables

A variable A is useless for a context-free grammar if there exists no derivation of the form

$$
S \Rightarrow^{*} u A v \Rightarrow^{+} w \quad \text { with } w \in T^{*}
$$

Removing production rules that contain a useless variable from a grammar does not change the generated language.

Removal of Useless Variables

A variable A is useless for a context-free grammar if there exists no derivation of the form

$$
S \Rightarrow^{*} u A v \Rightarrow^{+} w \quad \text { with } w \in T^{*}
$$

Removing production rules that contain a useless variable from a grammar does not change the generated language.

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are useless?

Removal of Useless Variables

A variable A is useless for a context-free grammar if there exists no derivation of the form

$$
S \Rightarrow^{*} u A v \Rightarrow^{+} w \quad \text { with } w \in T^{*}
$$

Removing production rules that contain a useless variable from a grammar does not change the generated language.

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are useless?

- A because there is no derivation $S \Rightarrow^{*} u A v$

Removal of Useless Variables

A variable A is useless for a context-free grammar if there exists no derivation of the form

$$
S \Rightarrow^{*} u A v \Rightarrow^{+} w \quad \text { with } w \in T^{*}
$$

Removing production rules that contain a useless variable from a grammar does not change the generated language.

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are useless?

- A because there is no derivation $S \Rightarrow^{*} u A v$
- C because there is no derivation $C \Rightarrow^{*} w$ with $w \in T^{*}$

Removal of Useless Variables

A variable A is useless for a context-free grammar if there exists no derivation of the form

$$
S \Rightarrow^{*} u A v \Rightarrow^{+} w \quad \text { with } w \in T^{*}
$$

Removing production rules that contain a useless variable from a grammar does not change the generated language.

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are useless?

- A because there is no derivation $S \Rightarrow^{*} u A v$
- C because there is no derivation $C \Rightarrow^{*} w$ with $w \in T^{*}$
- B because B can be reached only together with C

Removal of Useless Variables

A variable A is useless for a context-free grammar if there exists no derivation of the form

$$
S \Rightarrow^{*} u A v \Rightarrow^{+} w \quad \text { with } w \in T^{*}
$$

Removing production rules that contain a useless variable from a grammar does not change the generated language.

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are useless?

- A because there is no derivation $S \Rightarrow^{*} u A v$
- C because there is no derivation $C \Rightarrow^{*} w$ with $w \in T^{*}$
- B because B can be reached only together with C The resulting grammar is $S \rightarrow a S b \mid \lambda$.

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?
Construction
A variable A is called productive if $A \Rightarrow^{+} w$ with $w \in T^{*}$.

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?
Construction
A variable A is called productive if $A \Rightarrow^{+} w$ with $w \in T^{*}$.
We determine all productive variables:

- If $A \rightarrow y$ is a rule and all variables in y are productive, then A is productive.

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?
Construction
A variable A is called productive if $A \Rightarrow^{+} w$ with $w \in T^{*}$.
We determine all productive variables:

- If $A \rightarrow y$ is a rule and all variables in y are productive, then A is productive.
Remove all rules that contain a non-productive variable.

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?
Construction
A variable A is called productive if $A \Rightarrow^{+} w$ with $w \in T^{*}$.
We determine all productive variables:

- If $A \rightarrow y$ is a rule and all variables in y are productive, then A is productive.
Remove all rules that contain a non-productive variable.
We determine all reachable variables as follows:
$\square S$ is reachable.
- If $A \rightarrow y$ and A is reachable, then so are all variables in y.

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?
Construction
A variable A is called productive if $A \Rightarrow^{+} w$ with $w \in T^{*}$.
We determine all productive variables:

- If $A \rightarrow y$ is a rule and all variables in y are productive, then A is productive.
Remove all rules that contain a non-productive variable.
We determine all reachable variables as follows:
$\square S$ is reachable.
- If $A \rightarrow y$ and A is reachable, then so are all variables in y.

Remove all rules that contain a non-reachable variable.

Removal of Useless Variables

Question

How to determine useless variables of a context-free grammar?
Construction
A variable A is called productive if $A \Rightarrow^{+} w$ with $w \in T^{*}$.
We determine all productive variables:

- If $A \rightarrow y$ is a rule and all variables in y are productive, then A is productive.
Remove all rules that contain a non-productive variable.
We determine all reachable variables as follows:
- S is reachable.
- If $A \rightarrow y$ and A is reachable, then so are all variables in y.

Remove all rules that contain a non-reachable variable.
A variable is useless if it is not in one of the remaining rules.

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are non-productive?

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are non-productive?

- C is not productive

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are non-productive?

- C is not productive

We remove all rules containing non-productive variables:

$$
S \rightarrow a S b \mid \lambda \quad A \rightarrow S b \quad B \rightarrow a
$$

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are non-productive?

- C is not productive

We remove all rules containing non-productive variables:

$$
S \rightarrow a S b \mid \lambda \quad A \rightarrow S b \quad B \rightarrow a
$$

Which variables are reachable from S ?

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are non-productive?

- C is not productive

We remove all rules containing non-productive variables:

$$
S \rightarrow a S b \mid \lambda \quad A \rightarrow S b \quad B \rightarrow a
$$

Which variables are reachable from S ?

- only S is reachable

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are non-productive?

- C is not productive

We remove all rules containing non-productive variables:

$$
S \rightarrow a S b \mid \lambda \quad A \rightarrow S b \quad B \rightarrow a
$$

Which variables are reachable from S ?

- only S is reachable

We remove all rules containing non-reachable variables:

$$
S \rightarrow a S b \mid \lambda
$$

Removal of Useless Variables

$$
S \rightarrow a S b|B C| \lambda \quad A \rightarrow S b \quad B \rightarrow a \quad C \rightarrow C
$$

Which variables are non-productive?

- C is not productive

We remove all rules containing non-productive variables:

$$
S \rightarrow a S b \mid \lambda \quad A \rightarrow S b \quad B \rightarrow a
$$

Which variables are reachable from S ?

- only S is reachable

We remove all rules containing non-reachable variables:

$$
S \rightarrow a S b \mid \lambda
$$

Hence only S is useful, the variables A, B, C are not useful.

First (A)

$\operatorname{First}(A)$

We consider the first terminal letters derivable from a word:

$$
\operatorname{First}(w)=\left\{a \in T \mid w \Rightarrow^{*} a \ldots\right\} \cup\left\{\lambda \mid w \Rightarrow^{*} \lambda\right\}
$$

$\operatorname{First}(A)$

We consider the first terminal letters derivable from a word:

$$
\operatorname{First}(w)=\left\{a \in T \mid w \Rightarrow^{*} a \ldots\right\} \cup\left\{\lambda \mid w \Rightarrow^{*} \lambda\right\}
$$

Algorithm

Let PreFirst(w) be the smallest set such that:

- $w \in \operatorname{PreFirst}(w)$
- $a \in \operatorname{PreFirst}(w)$ if $a v \in \operatorname{PreFirst}(w)$
- $B \in \operatorname{PreFirst}(w)$ if $B v \in \operatorname{PreFirst}(w)$
$\square v \in \operatorname{PreFirst}(w)$ if $B v \in \operatorname{PreFirst}(w)$ and B erasable
■ $v \in \operatorname{PreFirst}(w)$ for every $A \in \operatorname{PreFirst}(w)$ and rule $A \rightarrow v$
Then First (w) consists of
■ all terminal letters $a \in T$ such that $a \in \operatorname{PreFirst}(w)$, and
$\square \lambda$ if $w=A_{1} A_{2} \ldots A_{n}$ for erasable variables A_{1}, \ldots, A_{n}.

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are:

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S):$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{$

PreFirst $(B)=\{$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{\boldsymbol{A}$
$\operatorname{PreFirst}(B)=\{$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}_{\text {from } A}$
$\operatorname{PreFirst}(B)=\{$
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A)$, $\operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}_{\text {from } A}, \underbrace{\lambda}_{\text {from } A}$
$\operatorname{PreFirst}(B)=\{$
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}$ from A from A from $B a$
PreFirst $(B)=\{$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}$ from A from A from $B a$ from B
PreFirst $(B)=\{$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}$ from A from A from B from B from B
$\operatorname{PreFirst}(B)=\{$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}_{\text {from } B}$
\}
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}_{\text {from } B}, \underbrace{d}_{\text {from } B}$

PreFirst $(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}$ from B from B from $A b$
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}, \underbrace{A}\}$ from B from B from $A b$ from $A b$
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$
$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}_{\text {from } S}$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}$ from S from $A A c$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}$ from S from $A A c$ from $A c$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}, \underbrace{A}\}$ from S from $A A c$ from $A c$ from $A A c$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from S from $A A c$ from $A c$ from $A A c$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from S from $A A c$ from $A c$ from $A A c$
$=\{S, A A c, A c, c, A, B a, \lambda, B, A b, d, b\}$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from S from $A A c$ from $A c$ from $A A c$

$$
=\{S, A A c, A c, c, A, B a, \lambda, B, A b, d, b\}
$$

Thus we get
First $(A)=$
First $(B)=$
$\operatorname{First}(S)=$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from S from $A A c$ from $A c$ from $A A c$

$$
=\{S, A A c, A c, c, A, B a, \lambda, B, A b, d, b\}
$$

Thus we get
$\operatorname{First}(A)=\{b, d, \lambda\} \quad \operatorname{First}(B)=$
$\operatorname{First}(S)=$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from S from $A A c$ from $A c$ from $A A c$

$$
=\{S, A A c, A c, c, A, B a, \lambda, B, A b, d, b\}
$$

Thus we get
$\operatorname{First}(A)=\{b, d, \lambda\} \quad \operatorname{First}(B)=\{b, d\} \quad \operatorname{First}(S)=$

Exercise

$$
S \rightarrow A A c \quad A \rightarrow B a|\lambda \quad B \rightarrow A b| d
$$

The erasable variables $\left(V \Rightarrow^{+} \lambda\right)$ are: A.
We determine $\operatorname{PreFirst}(A), \operatorname{PreFirst}(B)$ and $\operatorname{PreFirst}(S)$:
$\operatorname{PreFirst}(A)=\{A, \underbrace{B a}, \underbrace{\lambda}, \underbrace{B}, \underbrace{A b}, \underbrace{d}, \underbrace{b}\}$ from A from A from $B a$ from B from B from $A b$
$\operatorname{PreFirst}(B)=\{B, \underbrace{A b}, \underbrace{d}, \underbrace{b}\} \cup \operatorname{PreFirst}(A)$ from B from B from $A b$ from $A b$

$$
=\{A, B a, \lambda, B, A b, d, b\}
$$

$\operatorname{PreFirst}(S)=\{S, \underbrace{A A c}, \underbrace{A c}, \underbrace{c}, \underbrace{A}\} \cup \operatorname{PreFirst}(A)$ from S from $A A c$ from $A c$ from $A A c$

$$
=\{S, A A c, A c, c, A, B a, \lambda, B, A b, d, b\}
$$

Thus we get
$\operatorname{First}(A)=\{b, d, \lambda\} \quad \operatorname{First}(B)=\{b, d\} \quad \operatorname{First}(S)=\{b, c, d\}$

Follow(A)

Follow (A)

The sets $\operatorname{First}(A)$ are not yet sufficient for 'predictive' parsing, if there are derivations $A \Rightarrow^{+} \lambda$.

Follow (A)

The sets $\operatorname{First}(A)$ are not yet sufficient for 'predictive' parsing, if there are derivations $A \Rightarrow^{+} \lambda$.

We consider the terminal letters that can follow a variable:

$$
\text { Follow }(A)=\left\{a \in T \mid S \Rightarrow^{*} \ldots A a \ldots\right\}
$$

Intuition: $a \in \operatorname{Follow}(A)$ if A can be followed by a in a derivation.

Follow (A)

The sets $\operatorname{First}(A)$ are not yet sufficient for 'predictive' parsing, if there are derivations $A \Rightarrow^{+} \lambda$.

We consider the terminal letters that can follow a variable:

$$
\text { Follow }(A)=\left\{a \in T \mid S \Rightarrow^{*} \ldots A a \ldots\right\}
$$

Intuition: $a \in \operatorname{Follow}(A)$ if A can be followed by a in a derivation.

We use \$ as a special 'end of word' symbol.

Algorithm

Follow (A)

The sets $\operatorname{First}(A)$ are not yet sufficient for 'predictive' parsing, if there are derivations $A \Rightarrow^{+} \lambda$.

We consider the terminal letters that can follow a variable:

$$
\text { Follow }(A)=\left\{a \in T \mid S \Rightarrow^{*} \ldots A a \ldots\right\}
$$

Intuition: $a \in \operatorname{Follow}(A)$ if A can be followed by a in a derivation.

We use \$ as a special 'end of word' symbol.

Algorithm

- Follow $(S) \supseteq\{\$\}$

Follow (A)

The sets $\operatorname{First}(\boldsymbol{A})$ are not yet sufficient for 'predictive' parsing, if there are derivations $A \Rightarrow^{+} \lambda$.

We consider the terminal letters that can follow a variable:

$$
\text { Follow }(A)=\left\{a \in T \mid S \Rightarrow^{*} \ldots A a \ldots\right\}
$$

Intuition: $a \in \operatorname{Follow}(A)$ if A can be followed by a in a derivation.

We use \$ as a special 'end of word' symbol.

Algorithm

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

Follow (A)

The sets $\operatorname{First}(\boldsymbol{A})$ are not yet sufficient for 'predictive' parsing, if there are derivations $A \Rightarrow^{+} \lambda$.

We consider the terminal letters that can follow a variable:

$$
\text { Follow }(A)=\left\{a \in T \mid S \Rightarrow^{*} \ldots A a \ldots\right\}
$$

Intuition: $a \in \operatorname{Follow}(A)$ if A can be followed by a in a derivation.

We use \$ as a special 'end of word' symbol.

Algorithm

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq \operatorname{Follow}(B)$ for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

Example

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

If $C \rightarrow A B$, then:

Example

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

If $C \rightarrow A B$, then:

- First $(B) \subseteq \operatorname{Follow}(A)$

Example: $C \Rightarrow A B \Rightarrow^{*}$ Aaw if $B \rightarrow$ aw

Example

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

If $C \rightarrow A B$, then:

- First $(B) \subseteq \operatorname{Follow}(A)$

Example: $C \Rightarrow A B \Rightarrow^{*}$ Aaw if $B \rightarrow$ aw

- Follow $(C) \subseteq$ Follow (B)

Example: $S \Rightarrow \mathrm{Ca} \Rightarrow \mathrm{ABa}$ if $S \rightarrow \mathrm{Ca}$

Example

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

If $C \rightarrow A B$, then:

- $\operatorname{First}(B) \subseteq \operatorname{Follow}(A)$

Example: $C \Rightarrow A B \Rightarrow^{*}$ Aaw if $B \rightarrow$ aw

- Follow $(C) \subseteq$ Follow (B)

Example: $S \Rightarrow C a \Rightarrow A B a$ if $S \rightarrow C a$

- Follow $(C) \subseteq \operatorname{Follow}(A)$ if $B \Rightarrow^{*} \lambda$

Example: $S \Rightarrow C a \Rightarrow A B a \Rightarrow A a$ if $S \rightarrow C a$ and $B \rightarrow \lambda$

Exercise

- Follow $(S) \supseteq\{\$\}$

■ Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), $\operatorname{Follow}(A)$, Follow (B) :

Exercise

- Follow $(S) \supseteq\{\$\}$

■ Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq$

Exercise

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$

Exercise

- Follow $(S) \supseteq\{\$\}$

■ Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq$

Exercise

- Follow $(S) \supseteq\{\$\}$

■ Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$

Exercise

- Follow $(S) \supseteq\{\$\}$

■ Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$
Follow $(A) \supseteq$

Exercise

- Follow $(S) \supseteq\{\$\}$

■ Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$
Follow $(A) \supseteq(\operatorname{First}(A) \backslash\{\lambda\})$

Exercise

- Follow $(S) \supseteq\{\$\}$

■ Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$

- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$
Follow $(A) \supseteq(\operatorname{First}(A) \backslash\{\lambda\}) \cup\{b\}$

Exercise

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$
Follow $(A) \supseteq(\operatorname{First}(A) \backslash\{\lambda\}) \cup\{b\} \cup$ Follow (D)

Exercise

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$
Follow $(A) \supseteq(\operatorname{First}(A) \backslash\{\lambda\}) \cup\{b\} \cup$ Follow $(D) \supseteq\{b, c, d\}$

Exercise

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$
Follow $(A) \supseteq(\operatorname{First}(A) \backslash\{\lambda\}) \cup\{b\} \cup$ Follow $(D) \supseteq\{b, c, d\}$
Follow $(B) \supseteq$

Exercise

- Follow $(S) \supseteq\{\$\}$
- Follow $(A) \supseteq \operatorname{First}(w) \backslash\{\lambda\}$ for every rule $B \rightarrow v A w$
- Follow $(A) \supseteq$ Follow (B) for rules $B \rightarrow v A w$ with $\lambda \in \operatorname{First}(w)$

$$
\begin{array}{ll}
S \rightarrow D c & A \rightarrow B a \mid \lambda \\
D \rightarrow A A & B \rightarrow A b \mid d
\end{array}
$$

We have

$$
\begin{array}{ll}
\operatorname{First}(S)=\{b, c, d\} & \operatorname{First}(A)=\{\lambda, b, d\} \\
\operatorname{First}(D)=\{\lambda, b, d\} & \operatorname{First}(B)=\{b, d\}
\end{array}
$$

Determine Follow (S), Follow (D), Follow (A), Follow (B) :
Follow $(S) \supseteq\{\$\}$
Follow $(D) \supseteq\{c\}$
Follow $(A) \supseteq(\operatorname{First}(A) \backslash\{\lambda\}) \cup\{b\} \cup$ Follow $(D) \supseteq\{b, c, d\}$
Follow $(B) \supseteq\{\boldsymbol{a}\}$

Parser Tables

Parser Tables

The parser table for a context-free grammar is a table with

- columns indexed by terminals $T \cup\{\$\}$,
- rows indexed by variables V,

At place $[a \in T \cup\{\$\}, B \in V]$ it contains rules $B \rightarrow u$ for which

- $a \in \operatorname{First}(u)$, or
(never the case for $a=\$$)
$\square \lambda \in \operatorname{First}(u)$ and $a \in \operatorname{Follow}(B)$.

Parser Tables

The parser table for a context-free grammar is a table with

- columns indexed by terminals $T \cup\{\$\}$,
- rows indexed by variables V,

At place $[a \in T \cup\{\$\}, B \in V]$ it contains rules $B \rightarrow u$ for which

- $a \in \operatorname{First}(u)$, or
(never the case for $a=\$$)
$\square \lambda \in \operatorname{First}(u)$ and $a \in \operatorname{Follow}(B)$.

$$
S \rightarrow a S b \mid \lambda
$$

We have
$\square \operatorname{First}(a S b)=\{a\}, \operatorname{First}(\lambda)=\{\lambda\}, \operatorname{First}(S)=\{\lambda, a\}$

- Follow $(S)=\{b, \$\}$,

Thus the parser table is:

	a	b	$\$$
S			

Parser Tables

The parser table for a context-free grammar is a table with

- columns indexed by terminals $T \cup\{\$\}$,
- rows indexed by variables V,

At place $[a \in T \cup\{\$\}, B \in V]$ it contains rules $B \rightarrow u$ for which

- $a \in \operatorname{First}(u)$, or
(never the case for $a=\$$)
$\square \lambda \in \operatorname{First}(u)$ and $a \in \operatorname{Follow}(B)$.

$$
S \rightarrow a S b \mid \lambda
$$

We have
$\square \operatorname{First}(a S b)=\{a\}, \operatorname{First}(\lambda)=\{\lambda\}, \operatorname{First}(S)=\{\lambda, a\}$

- Follow $(S)=\{b, \$\}$,

Thus the parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$		

Parser Tables

The parser table for a context-free grammar is a table with

- columns indexed by terminals $T \cup\{\$\}$,
- rows indexed by variables V,

At place $[a \in T \cup\{\$\}, B \in V]$ it contains rules $B \rightarrow u$ for which

- $a \in \operatorname{First}(u)$, or
(never the case for $a=\$$)
$\square \lambda \in \operatorname{First}(u)$ and $a \in \operatorname{Follow}(B)$.

$$
S \rightarrow a S b \mid \lambda
$$

We have
$\square \operatorname{First}(a S b)=\{a\}, \operatorname{First}(\lambda)=\{\lambda\}, \operatorname{First}(S)=\{\lambda, a\}$

- Follow $(S)=\{b, \$\}$,

Thus the parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	

Parser Tables

The parser table for a context-free grammar is a table with

- columns indexed by terminals $T \cup\{\$\}$,
- rows indexed by variables V,

At place $[a \in T \cup\{\$\}, B \in V]$ it contains rules $B \rightarrow u$ for which

- $a \in \operatorname{First}(u)$, or
(never the case for $a=\$$)
$\square \lambda \in \operatorname{First}(u)$ and $a \in \operatorname{Follow}(B)$.

$$
S \rightarrow a S b \mid \lambda
$$

We have
$\square \operatorname{First}(a S b)=\{a\}, \operatorname{First}(\lambda)=\{\lambda\}, \operatorname{First}(S)=\{\lambda, a\}$

- Follow $(S)=\{b, \$\}$,

Thus the parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell [$a \in T \cup\{\$\}, B \in V]$ at most one production rule.

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell [$a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\mathrm{LL}(1)$-grammar and parsing table.

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\operatorname{LL}(1)$-grammar and parsing table.
To parse $a_{1} \cdots a_{n}$, we start with $\left\langle S \$, a_{1} \cdots a_{n} \$\right\rangle$.

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\operatorname{LL}(1)$-grammar and parsing table.
To parse $a_{1} \cdots a_{n}$, we start with $\left\langle S \$, a_{1} \cdots a_{n} \$\right\rangle$.
From a state $\langle v, w\rangle$ we can do the following steps:

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\operatorname{LL}(1)$-grammar and parsing table.
To parse $a_{1} \cdots a_{n}$, we start with $\left\langle S \$, a_{1} \cdots a_{n} \$\right\rangle$.
From a state $\langle v, w\rangle$ we can do the following steps:

- $\left\langle a v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle v^{\prime}, w^{\prime}\right\rangle$

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\operatorname{LL}(1)$-grammar and parsing table.
To parse $a_{1} \cdots a_{n}$, we start with $\left\langle S \$, a_{1} \cdots a_{n} \$\right\rangle$.
From a state $\langle v, w\rangle$ we can do the following steps:

- $\left\langle a v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle v^{\prime}, w^{\prime}\right\rangle$
- $\left\langle B v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle u v^{\prime}, a w^{\prime}\right\rangle$ if $B \rightarrow u$ at position [a, B]

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\operatorname{LL}(1)$-grammar and parsing table.
To parse $a_{1} \cdots a_{n}$, we start with $\left\langle S \$, a_{1} \cdots a_{n} \$\right\rangle$.
From a state $\langle v, w\rangle$ we can do the following steps:

- $\left\langle a v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle v^{\prime}, w^{\prime}\right\rangle$
- $\left\langle B v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle u v^{\prime}, a w^{\prime}\right\rangle$ if $B \rightarrow u$ at position $[a, B]$
- $\left\langle B v^{\prime}, \$\right\rangle$ becomes $\left\langle v^{\prime}, \$\right\rangle$ if $B \rightarrow u$ at position $[\$, B]$

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\operatorname{LL}(1)$-grammar and parsing table.
To parse $a_{1} \cdots a_{n}$, we start with $\left\langle S \$, a_{1} \cdots a_{n} \$\right\rangle$.
From a state $\langle v, w\rangle$ we can do the following steps:

- $\left\langle a v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle v^{\prime}, w^{\prime}\right\rangle$
- $\left\langle B v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle u v^{\prime}, a w^{\prime}\right\rangle$ if $B \rightarrow u$ at position [a, B]
- $\left\langle B v^{\prime}, \$\right\rangle$ becomes $\left\langle v^{\prime}, \$\right\rangle$ if $B \rightarrow u$ at position $[\$, B]$
- $\langle \$, \\rangle results in accept

LL(1) Grammars and Parsing

A grammar is $\mathrm{LL}(1)$ if its parser table contains in ever cell $[a \in T \cup\{\$\}, B \in V]$ at most one production rule.

An LL(1) parser reads from Left to right, performs a Leftmost derivation, and looks always at 1 symbol of the input.

Given an $\operatorname{LL}(1)$-grammar and parsing table.
To parse $a_{1} \cdots a_{n}$, we start with $\left\langle S \$, a_{1} \cdots a_{n} \$\right\rangle$.
From a state $\langle v, w\rangle$ we can do the following steps:

- $\left\langle a v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle v^{\prime}, w^{\prime}\right\rangle$
- $\left\langle B v^{\prime}, a w^{\prime}\right\rangle$ becomes $\left\langle u v^{\prime}, a w^{\prime}\right\rangle$ if $B \rightarrow u$ at position $[a, B]$
- $\left\langle B v^{\prime}, \$\right\rangle$ becomes $\left\langle v^{\prime}, \$\right\rangle$ if $B \rightarrow u$ at position $[\$, B]$
- $\langle \$, \\rangle results in accept
- In all other cases, $\langle v, w\rangle$ results in reject!

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \\rangle

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

$$
\begin{array}{rl}
& a \\
S & S \rightarrow a S b \\
\hline S \rightarrow \lambda & S \rightarrow \lambda \\
\langle S \$, a b \$\rangle & \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle \\
& \rightarrow\langle \$, \$\rangle \text { accept }
\end{array}
$$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

$$
\begin{array}{r|ccc}
& a & b & \$ \\
\hline S & S \rightarrow a S b & S \rightarrow \lambda & S \rightarrow \lambda \\
\langle S \$, a b \$\rangle & \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle \\
& \rightarrow\langle \$, \$\rangle \text { accept }
\end{array}
$$

〈S\$, abb\$〉

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

$$
\begin{array}{r|ccc}
& a & b & \$ \\
& S & S \rightarrow a S b & S \rightarrow \lambda \\
\hline S \rightarrow \lambda \\
\langle S \$, a b \$\rangle & \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle \\
& \rightarrow\langle \$, \$\rangle \text { accept } \\
\langle S \$, a b b \$\rangle & \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle \\
& \rightarrow\langle \$, b \$\rangle
\end{array}
$$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

$$
\left.\begin{array}{rlcc}
& a & b & \$ \\
& S & S \rightarrow a S b & S \rightarrow \lambda \\
\hline S \rightarrow \lambda
\end{array}\right)
$$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

$$
\left.\begin{array}{rlcc}
& a & b & \$ \\
& S & S \rightarrow a S b & S \rightarrow \lambda \\
\hline S \rightarrow \lambda
\end{array}\right)
$$

$\langle S \$, a a b \\rangle

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$
$\rightarrow\langle \$, b \\rangle reject
$\langle S \$, a a b \$\rangle \rightarrow\langle a S b \$, a a b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$
$\rightarrow\langle \$, b \\rangle reject
$\langle S \$, a a b \$\rangle \rightarrow\langle a S b \$, a a b \$\rangle \rightarrow\langle S b \$, a b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$
$\rightarrow\langle \$, b \\rangle reject
$\langle S \$, a a b \$\rangle \rightarrow\langle a S b \$, a a b \$\rangle \rightarrow\langle S b \$, a b \$\rangle \rightarrow\langle a S b b \$, a b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$
$\rightarrow\langle \$, b \\rangle reject
$\langle S \$, a a b \$\rangle \rightarrow\langle a S b \$, a a b \$\rangle \rightarrow\langle S b \$, a b \$\rangle \rightarrow\langle a S b b \$, a b \$\rangle$ $\rightarrow\langle S b b \$, b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$
$\rightarrow\langle \$, b \\rangle reject
$\langle S \$, a a b \$\rangle \rightarrow\langle a S b \$, a a b \$\rangle \rightarrow\langle S b \$, a b \$\rangle \rightarrow\langle a S b b \$, a b \$\rangle$ $\rightarrow\langle S b b \$, b \$\rangle \rightarrow\langle b b \$, b \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$
$\rightarrow\langle \$, b \\rangle reject
$\langle S \$, a a b \$\rangle \rightarrow\langle a S b \$, a a b \$\rangle \rightarrow\langle S b \$, a b \$\rangle \rightarrow\langle a S b b \$, a b \$\rangle$ $\rightarrow\langle S b b \$, b \$\rangle \rightarrow\langle b b \$, b \$\rangle \rightarrow\langle b \$, \$\rangle$

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

	a	b	$\$$
S	$S \rightarrow a S b$	$S \rightarrow \lambda$	$S \rightarrow \lambda$

$\langle S \$, a b \$\rangle \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle$
$\rightarrow\langle \$, \\rangle accept
$\langle S \$, a b b \$\rangle \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle$
$\rightarrow\langle \$, b \\rangle reject
$\langle S \$, a a b \$\rangle \rightarrow\langle a S b \$, a a b \$\rangle \rightarrow\langle S b \$, a b \$\rangle \rightarrow\langle a S b b \$, a b \$\rangle$ $\rightarrow\langle S b b \$, b \$\rangle \rightarrow\langle b b \$, b \$\rangle \rightarrow\langle b \$, \$\rangle$ reject

Example

$$
S \rightarrow a S b \mid \lambda
$$

The parser table is:

$$
\begin{aligned}
& a \\
& S \\
& S \rightarrow a S b \quad S \rightarrow \lambda \quad S \rightarrow \lambda \\
\langle S \$, a b \$\rangle & \rightarrow\langle a S b \$, a b \$\rangle \rightarrow\langle S b \$, b \$\rangle \rightarrow\langle b \$, b \$\rangle \\
& \rightarrow\langle \$, \$\rangle \text { accept } \\
\langle S \$, a b b \$\rangle & \rightarrow\langle a S b \$, a b b \$\rangle \rightarrow\langle S b \$, b b \$\rangle \rightarrow\langle b \$, b b \$\rangle \\
& \rightarrow\langle \$, b \$\rangle \text { reject } \\
\langle S \$, a a b \$\rangle & \rightarrow\langle a S b \$, a a b \$\rangle \rightarrow\langle S b \$, a b \$\rangle \rightarrow\langle a S b b \$, a b \$\rangle \\
& \rightarrow\langle S b b \$, b \$\rangle \rightarrow\langle b b \$, b \$\rangle \rightarrow\langle b \$, \$\rangle \text { reject }
\end{aligned}
$$

JavaCC (Java Compiler Compiler) automatically generates a parser from an LL(1) grammar.

LL(k) Grammars

LL(k) Grammars

The class of $\operatorname{LL}(1)$ grammars is often to restrictive in practice.

LL(k) Grammars

The class of $\operatorname{LL}(1)$ grammars is often to restrictive in practice.
LL (1) parsers looks at 1 symbol to decide which rule to use.

LL(k) Grammars

The class of $\mathrm{LL}(1)$ grammars is often to restrictive in practice.
$\operatorname{LL}(1)$ parsers looks at 1 symbol to decide which rule to use.

An $\operatorname{LL}(k)$ parser looks k symbols ahead to choose the rule.

LL(k) Grammars

The class of $\operatorname{LL}(1)$ grammars is often to restrictive in practice.
$\mathrm{LL}(1)$ parsers looks at 1 symbol to decide which rule to use.

An $\operatorname{LL}(k)$ parser looks k symbols ahead to choose the rule.
The parser table is constructed with k symbols look-ahead.

LL(k) Grammars

The class of $\operatorname{LL}(1)$ grammars is often to restrictive in practice.
$\mathrm{LL}(1)$ parsers looks at 1 symbol to decide which rule to use.

An $\operatorname{LL}(k)$ parser looks k symbols ahead to choose the rule.
The parser table is constructed with k symbols look-ahead.
A grammar is $\operatorname{LL}(k)$ if this table has in every cell ≤ 1 rule.

LL(k) Grammars

The class of $\operatorname{LL}(1)$ grammars is often to restrictive in practice.
$\mathrm{LL}(1)$ parsers looks at 1 symbol to decide which rule to use.

An $\operatorname{LL}(k)$ parser looks k symbols ahead to choose the rule.
The parser table is constructed with k symbols look-ahead.
A grammar is $\mathrm{LL}(k)$ if this table has in every cell ≤ 1 rule.
$\operatorname{LL}(k)$ is strictly contained in $\operatorname{LL}(k+1)$.

LL(k) Grammars

The class of $\operatorname{LL}(1)$ grammars is often to restrictive in practice.
$\mathrm{LL}(1)$ parsers looks at 1 symbol to decide which rule to use.

An $\operatorname{LL}(k)$ parser looks k symbols ahead to choose the rule.
The parser table is constructed with k symbols look-ahead.
A grammar is $\mathrm{LL}(k)$ if this table has in every cell ≤ 1 rule.
$\operatorname{LL}(k)$ is strictly contained in $\operatorname{LL}(k+1)$.
Disadvantage: size of the parser table grows exponential in k.

Exercises

Can ambiguous grammars be $\operatorname{LL}(k)$ for some $k \geq 1$?

Is the following grammar $\operatorname{LL}(k)$ for some $k \geq 1$?

$$
S \rightarrow a S a \mid \lambda
$$

Left Factorisation

Left Factorisation

Left factorisation: rewrite rules $A \rightarrow u v \mid u w(u \neq \lambda)$ into

$$
A \rightarrow u B \quad \text { and } \quad B \rightarrow v \mid w
$$

where B is a fresh variable.

Left Factorisation

Left factorisation: rewrite rules $A \rightarrow u v \mid u w(u \neq \lambda)$ into

$$
A \rightarrow u B \quad \text { and } \quad B \rightarrow v \mid w
$$

where B is a fresh variable.
The grammar $S \rightarrow a b \mid a c$ is not $\operatorname{LL}(1):$

	a	b	c	$\$$
S	$S \rightarrow a b$			
	$S \rightarrow a c$			

Left Factorisation

Left factorisation: rewrite rules $A \rightarrow u v \mid u w(u \neq \lambda)$ into

$$
A \rightarrow u B \quad \text { and } \quad B \rightarrow v \mid w
$$

where B is a fresh variable.
The grammar $S \rightarrow a b \mid a c$ is not $\operatorname{LL}(1):$

	a	b	c	$\$$
S	$S \rightarrow a b$			
	$S \rightarrow a c$			

After left factorisation we get: $\quad S \rightarrow a A \quad A \rightarrow b \mid c$
The grammar $S \rightarrow a A, A \rightarrow b \mid c$ is $\operatorname{LL}(1):$

	a	b	c	$\$$
S	$S \rightarrow a A$			
A		$A \rightarrow b$	$A \rightarrow c$	

