Automata Theory :: CYK Parsing

Jörg Endrullis

Vrije Universiteit Amsterdam

Bottom-up parsing applies rules backwards, it tries to construct the starting variable *S* from the input word.

Cocke-Younger-Kasami algorithm (1965)

The **CYK algorithm** is a bottom-up parsing technique for grammars in Chomsky normal form.

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.

Goal: determine whether word $w \neq \lambda$ is in L(G).

Idea: compute sets V_u of variables (*u* subword of *w*) such that

$$V_{u} = \{ A \in V \mid A \Rightarrow^{+} u \}$$

as follows:

• if
$$|u| = 1$$
, then $V_u = \{A \in V \mid A \rightarrow u \in P\}$

• if |u| > 1, then V_u is the set of all $A \in V$ such that

• $u = u_1 u_2$ for some non-empty words u_1, u_2 , and

• $A \rightarrow BC \in P$ with $B \in V_{u_1}$ and $C \in V_{u_2}$.

Finally, $w \in L(G) \Leftrightarrow S \in V_w$.

Worst-case time complexity: $O(n^3)$ (There are n(n+1)/2 sets V_u , and computation of V_u is O(n).)

Exercise

Use the CYK algorithm to check whether abbb is generated by

 $S \rightarrow AB$ $A \rightarrow BB \mid a$ $B \rightarrow AB \mid b$

We have

$$V_{a} = \{A\} \text{ since } A \to a$$

$$V_{b} = \{B\} \text{ since } B \to b$$

$$V_{ab} = \{X \mid X \to V_{a}V_{b} = \{AB\}\} = \{S, B\}$$

$$V_{bb} = \{X \mid X \to V_{b}V_{b} = \{BB\}\} = \{A\}$$

$$V_{abb} = \{X \mid X \to V_{a}V_{bb} \cup V_{ab}V_{b} = \{AA, SB, BB\}\} = \{A\}$$

$$V_{bbb} = \{X \mid X \to V_{b}V_{bb} \cup V_{ab}V_{b} = \{BA, AB\}\} = \{S, B\}$$

$$V_{abbb} = \{X \mid X \to V_{a}V_{bbb} \cup V_{ab}V_{bb} \cup V_{abb}V_{b}\}$$

$$= \{X \mid X \to V_{a}V_{bbb} \cup V_{ab}V_{bb} \cup V_{abb}V_{b}\}$$

$$= \{X \mid X \to \{AS, AB, SA, BA\}\} = \{S, B\}$$
The word $abbb$ is in the language since $S \in V_{abbb}$:

$$\sum_{abbb} \to A \xrightarrow{a} B \xrightarrow{b} A \xrightarrow{A} A \xrightarrow{b} B \xrightarrow{b} A \xrightarrow{b} B \xrightarrow{b} A \xrightarrow{b} A \xrightarrow{b} B$$