Automata Theory :: CYK Parsing

Jörg Endrullis

Vrije Universiteit Amsterdam

Bottom-up Parsing

Bottom-up parsing applies rules backwards, it tries to construct the starting variable S from the input word.

Bottom-up Parsing

Bottom-up parsing applies rules backwards, it tries to construct the starting variable S from the input word.

Cocke-Younger-Kasami algorithm (1965)

The CYK algorithm is a bottom-up parsing technique for grammars in Chomsky normal form.

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.
Goal: determine whether word $w \neq \lambda$ is in $L(G)$.

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.
Goal: determine whether word $w \neq \lambda$ is in $L(G)$.
Idea: compute sets V_{u} of variables (u subword of w) such that

$$
V_{u}=\left\{A \in V \mid A \Rightarrow^{+} u\right\}
$$

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.
Goal: determine whether word $w \neq \lambda$ is in $L(G)$.
Idea: compute sets V_{u} of variables (u subword of w) such that

$$
V_{u}=\left\{A \in V \mid A \Rightarrow^{+} u\right\}
$$

as follows:

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.
Goal: determine whether word $w \neq \lambda$ is in $L(G)$.
Idea: compute sets V_{u} of variables (u subword of w) such that

$$
V_{u}=\left\{A \in V \mid A \Rightarrow^{+} u\right\}
$$

as follows:

- if $|u|=1$, then $V_{u}=\{A \in V \mid A \rightarrow u \in P\}$

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.
Goal: determine whether word $w \neq \lambda$ is in $L(G)$.
Idea: compute sets V_{u} of variables (u subword of w) such that

$$
V_{u}=\left\{A \in V \mid A \Rightarrow^{+} u\right\}
$$

as follows:

- if $|u|=1$, then $V_{u}=\{A \in V \mid A \rightarrow u \in P\}$
- if $|u|>1$, then V_{u} is the set of all $A \in V$ such that
- $u=u_{1} u_{2}$ for some non-empty words u_{1}, u_{2}, and
- $A \rightarrow B C \in P$ with $B \in V_{u_{1}}$ and $C \in V_{u_{2}}$.

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.
Goal: determine whether word $w \neq \lambda$ is in $L(G)$.
Idea: compute sets V_{u} of variables (u subword of w) such that

$$
V_{u}=\left\{A \in V \mid A \Rightarrow^{+} u\right\}
$$

as follows:

- if $|u|=1$, then $V_{u}=\{A \in V \mid A \rightarrow u \in P\}$
- if $|u|>1$, then V_{u} is the set of all $A \in V$ such that
- $u=u_{1} u_{2}$ for some non-empty words u_{1}, u_{2}, and
- $A \rightarrow B C \in P$ with $B \in V_{U_{1}}$ and $C \in V_{u_{2}}$.

Finally, $w \in L(G) \Leftrightarrow S \in V_{w}$.

Cocke-Younger-Kasami Algorithm (1965)

Let G be a grammar in Chomsky normal form.
Goal: determine whether word $w \neq \lambda$ is in $L(G)$.
Idea: compute sets V_{u} of variables (u subword of w) such that

$$
V_{u}=\left\{A \in V \mid A \Rightarrow^{+} u\right\}
$$

as follows:

- if $|u|=1$, then $V_{u}=\{A \in V \mid A \rightarrow u \in P\}$
- if $|u|>1$, then V_{u} is the set of all $A \in V$ such that
- $u=u_{1} u_{2}$ for some non-empty words u_{1}, u_{2}, and
- $A \rightarrow B C \in P$ with $B \in V_{U_{1}}$ and $C \in V_{u_{2}}$.

Finally, $w \in L(G) \Leftrightarrow S \in V_{w}$.

Worst-case time complexity: $O\left(n^{3}\right)$
(There are $n(n+1) / 2$ sets V_{u}, and computation of V_{u} is $O(n)$.)

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & = \\
V_{b} & = \\
V_{a b} & = \\
V_{b b} & = \\
V_{a b b} & = \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{\boldsymbol{A}\} \quad \text { since } A \rightarrow a \\
V_{b} & = \\
V_{a b} & = \\
V_{b b} & = \\
V_{a b b} & = \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{\boldsymbol{A}\} \\
& \text { since } A \rightarrow \boldsymbol{a} \\
V_{b} & =\{\boldsymbol{B}\} \\
& \text { since } B \rightarrow b \\
V_{a b} & = \\
V_{b b} & = \\
V_{a b b} & = \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\} \\
V_{b b} & = \\
V_{a b b} & = \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \quad \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & = \\
V_{a b b} & = \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\} \\
V_{a b b} & = \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & = \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{\boldsymbol{A B}\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{\boldsymbol{A}\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\} \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & = \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\} \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\}
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$:

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$:

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \text { since } A \rightarrow a \\
V_{b} & =\{B\} \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$:

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \quad \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$:
$\underbrace{S}_{a b b b} \rightarrow \underbrace{A}_{a} \underbrace{B}_{b b b} \rightarrow \underbrace{A}_{a} \underbrace{A}_{b b} \underbrace{B}_{b} \rightarrow$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \quad \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$:
$\underbrace{S}_{a b b b} \rightarrow \underbrace{A}_{a} \underbrace{B}_{b b b} \rightarrow \underbrace{A}_{a} \underbrace{A}_{b b} \underbrace{B}_{b} \rightarrow$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \quad \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$:

$$
\underbrace{S}_{a b b b} \rightarrow \underbrace{A}_{a} \underbrace{B}_{b b b} \rightarrow \underbrace{A}_{a} \underbrace{A}_{b b} \underbrace{B}_{b} \rightarrow \underbrace{A}_{a} \underbrace{B}_{b} \underbrace{B}_{b} \underbrace{B}_{b} \rightarrow^{4}
$$

Exercise

Use the CYK algorithm to check whether $a b b b$ is generated by

$$
S \rightarrow A B \quad A \rightarrow B B|a \quad B \rightarrow A B| b
$$

We have

$$
\begin{aligned}
V_{a} & =\{A\} \quad \text { since } A \rightarrow a \\
V_{b} & =\{B\} \quad \text { since } B \rightarrow b \\
V_{a b} & =\left\{X \mid X \rightarrow V_{a} V_{b}=\{A B\}\right\}=\{S, B\} \\
V_{b b} & =\left\{X \mid X \rightarrow V_{b} V_{b}=\{B B\}\right\}=\{A\} \\
V_{a b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b} \cup V_{a b} V_{b}=\{A A, S B, B B\}\right\}=\{A\} \\
V_{b b b} & =\left\{X \mid X \rightarrow V_{b} V_{b b} \cup V_{b b} V_{b}=\{B A, A B\}\right\}=\{S, B\} \\
V_{a b b b} & =\left\{X \mid X \rightarrow V_{a} V_{b b b} \cup V_{a b} V_{b b} \cup V_{a b b} V_{b}\right\} \\
& =\{X \mid X \rightarrow\{A S, A B, S A, B A\}\}=\{S, B\}
\end{aligned}
$$

The word $a b b b$ is in the language since $S \in V_{a b b b}$:

$$
\underbrace{S}_{a b b b} \rightarrow \underbrace{A}_{a} \underbrace{B}_{b b b} \rightarrow \underbrace{A}_{a} \underbrace{A}_{b b} \underbrace{B}_{b} \rightarrow \underbrace{A}_{a} \underbrace{B}_{b} \underbrace{B}_{b} \underbrace{B}_{b} \rightarrow^{4} a b b b
$$

