Automata Theory :: Chomsky Normal Form

Jörg Endrullis

Vrije Universiteit Amsterdam

Lambda Rules and Erasable Variables

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ -production rule.

A variable *A* is called **erasable** if $A \Rightarrow^+ \lambda$.

The set of erasable variables can be computed as follows:

- If $A \rightarrow \lambda$, then A is erasable.
- If $A \rightarrow B_1 \cdots B_n$ and B_1, \dots, B_n are erasable, then so is A.

$$egin{array}{ccc} S
ightarrow AcB & A
ightarrow CBC & B
ightarrow abB & C
ightarrow cCd \ B
ightarrow \lambda & C
ightarrow BB \end{array}$$

We determine the set of erasable variables:

- *B* is erasable because of the rule $B \rightarrow \lambda$
- C is erasable because of $C \rightarrow BB$ and B is erasable

• *A* is erasable because of $A \rightarrow CBC$ and *B*, *C* are erasable So the variables *A*, *B*, *C* are erasable.

Theorem

For every context-free language *L* there exists a context-free grammar *G* without λ -rules such that $L(G) = L \setminus \{\lambda\}$.

Construction

Let *G* be a context-free grammar with L(G) = L.

- Determine all erasable variables (that is, variables $A \Rightarrow^* \lambda$).
- For every rule $A \rightarrow xBy$ with $B \Rightarrow^* \lambda$, add a rule $A \rightarrow xy$.
- Remove all λ-production rules.

The resulting grammar *G* has the property $L(G) = L \setminus \{\lambda\}$.

Exercise

Consider the following grammar

What variables are erasable?

A, B and C

Construct the resulting grammar after removing all λ -rules:

$$S \rightarrow ABaC \mid BaC \mid AaC \mid ABa \mid aC \mid Ba \mid Aa \mid a$$
$$A \rightarrow BC \mid C \mid B \mid \lambda$$
$$B \rightarrow b \mid \lambda \qquad \qquad C \rightarrow D \mid \lambda \qquad \qquad D \rightarrow d$$

Exercise

Consider the following grammar

What variables are erasable?

A, B and C

Construct the resulting grammar after removing all λ -rules:

$$S
ightarrow ABaC \mid BaC \mid AaC \mid ABa \mid aC \mid Ba \mid Aa \mid a$$

 $A
ightarrow BC \mid C \mid B$
 $B
ightarrow b$ $C
ightarrow D$ $D
ightarrow d$

Unit Production Rules

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called **unit production rule** (here $B \in V$).

Theorem

For every context-free language *L* there is a context-free grammar *G* without λ - and unit-productions with $L(G) = L \setminus \{\lambda\}$.

Construction

Let *G* be context-free, without λ -rules, and $L(G) = L \setminus \{\lambda\}$.

- Determine all pairs $A \neq B$ with $A \Rightarrow^+ B$.
- Whenever $A \Rightarrow^+ B$ and $B \rightarrow y$ is a rule, add a rule $A \rightarrow y$.
- Remove all unit production rules.

The resulting grammar *G* has no λ - and unit-productions and it has the property $L(G) = L \setminus \{\lambda\}$.

Exercise

Remove all unit production rules from

$$S
ightarrow Aa \mid B$$
 $A
ightarrow a \mid bc \mid B$ $B
ightarrow A \mid bb$

Note that there are no λ -productions. (So no need to first remove λ -productions.)

We determine all pairs $A \neq B$ with $A \Rightarrow^+ B$:

$$S \Rightarrow^+ B$$
 $A \Rightarrow^+ B$ $B \Rightarrow^+ A$ $S \Rightarrow^+ A$

Thus we add the following rules:

 $S \rightarrow Aa \mid B \mid a \mid bc \mid A \mid bb$ $A \rightarrow a \mid bc \mid B \mid A \mid bb$ $B \rightarrow A \mid bb \mid a \mid bc \mid B$

Removing all unit production rules yields the final result:

 $S
ightarrow a \mid bb \mid bc \mid Aa$ $A
ightarrow a \mid bb \mid bc$ $B
ightarrow a \mid bb \mid bc$

Chomsky Normal Form

In a grammar in **Chomsky normal form** all rules have the form

```
A \rightarrow BC or A \rightarrow a
```

Note that a grammar in Chomsky normal form contains

- no λ-production rules,
- no unit production rules.

Theorem

For every context-free language *L* there is a grammar *G* in Chomsky normal form with $L(G) = L \setminus \{\lambda\}$.

Chomsky Normal Form

Construction

Let G be a context-free grammar without λ - and unit-productions and $L(G) = L \setminus \{\lambda\}$.

- Introduce variables C_a and rules $C_a \rightarrow a$ for every $a \in T$.
- Replace every rule $A \rightarrow x_1 \cdots x_n$ ($x_i \in V \cup T$) with $n \ge 2$ by

 $A \to \sigma(x_1) \cdots \sigma(x_n)$ where $\sigma(x) = \begin{cases} x, & \text{if } x \in V \\ C_x, & \text{if } x \in T \end{cases}$

• Replace every $A \rightarrow B_1 \cdots B_n$ with $n \ge 3$ by

 $A \rightarrow B_1 \cdots B_{n-2}C$ $C \rightarrow B_{n-1}B_n$

where C is a fresh variable.

Repeat the last step until all rules are in Chomsky normal form.

 $S
ightarrow aSbX \mid a X
ightarrow Xa \mid aba$

into Chomsky normal form.

The λ -rules and unit-rules have already been removed.

We continue the transformation:

 $S \rightarrow aSbX \mid a$ $X \rightarrow Xa \mid aba$

into Chomsky normal form.

The λ -rules and unit-rules have already been removed.

We continue the transformation:

 $S \rightarrow aSbX \mid a$ $X \rightarrow Xa \mid aba$

into Chomsky normal form.

The λ -rules and unit-rules have already been removed.

We continue the transformation:

 $S \rightarrow aSbX \mid a$ $X \rightarrow Xa \mid aba$

into Chomsky normal form.

The λ -rules and unit-rules have already been removed.

We continue the transformation:

 $S
ightarrow aSbX \mid a X
ightarrow Xa \mid aba$

into Chomsky normal form.

The λ -rules and unit-rules have already been removed.

We continue the transformation:

 $S
ightarrow aSbX \mid a X
ightarrow Xa \mid aba$

into Chomsky normal form.

The $\lambda\text{-rules}$ and unit-rules have already been removed.

We continue the transformation: