Automata Theory :: Chomsky Normal Form

Jörg Endrullis

Vrije Universiteit Amsterdam

Lambda Rules and Erasable Variables

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.

A variable A is called erasable if $A \Rightarrow^{+} \lambda$.

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.

A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.

A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:

- If $A \rightarrow \lambda$, then A is erasable.

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.

A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:

- If $A \rightarrow \lambda$, then A is erasable.
- If $A \rightarrow B_{1} \ldots B_{n}$ and B_{1}, \ldots, B_{n} are erasable, then so is A.

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.
A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:
\square If $A \rightarrow \lambda$, then A is erasable.
\square If $A \rightarrow B_{1} \cdots B_{n}$ and B_{1}, \ldots, B_{n} are erasable, then so is A.

$$
\begin{array}{llll}
S \rightarrow A c B & A \rightarrow C B C & B \rightarrow a b B & \\
& & C \rightarrow c C d \\
& B \rightarrow \lambda & C \rightarrow B B
\end{array}
$$

We determine the set of erasable variables:

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.
A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:
\square If $A \rightarrow \lambda$, then A is erasable.
\square If $A \rightarrow B_{1} \cdots B_{n}$ and B_{1}, \ldots, B_{n} are erasable, then so is A.

$$
\begin{array}{llll}
S \rightarrow A c B & A \rightarrow C B C & B \rightarrow a b B & \\
& & C \rightarrow c C d \\
& B \rightarrow \lambda & C \rightarrow B B
\end{array}
$$

We determine the set of erasable variables:
$\square B$ is erasable because of the rule $B \rightarrow \lambda$

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.
A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:

- If $A \rightarrow \lambda$, then A is erasable.
- If $A \rightarrow B_{1} \cdots B_{n}$ and B_{1}, \ldots, B_{n} are erasable, then so is A.

$$
\begin{array}{llll}
S \rightarrow A c B & A \rightarrow C B C & B & \rightarrow a b B \\
& & C \rightarrow c C d \\
& B \rightarrow \lambda & & C \rightarrow B B
\end{array}
$$

We determine the set of erasable variables:

- B is erasable because of the rule $B \rightarrow \lambda$
$\square C$ is erasable because of $C \rightarrow B B$ and B is erasable

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.
A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:

- If $A \rightarrow \lambda$, then A is erasable.

■ If $A \rightarrow B_{1} \cdots B_{n}$ and B_{1}, \ldots, B_{n} are erasable, then so is A.

$$
\begin{array}{llll}
S \rightarrow A c B & A \rightarrow C B C & B & \rightarrow a b B \\
& & C \rightarrow c C d \\
& B \rightarrow \lambda & & C \rightarrow B B
\end{array}
$$

We determine the set of erasable variables:

- B is erasable because of the rule $B \rightarrow \lambda$
$\square C$ is erasable because of $C \rightarrow B B$ and B is erasable
- A is erasable because of $A \rightarrow C B C$ and B, C are erasable

Lambda Rules and Erasable Variables

A production rule $A \rightarrow \lambda$ is called λ-production rule.

A variable A is called erasable if $A \Rightarrow^{+} \lambda$.
The set of erasable variables can be computed as follows:

- If $A \rightarrow \lambda$, then A is erasable.

■ If $A \rightarrow B_{1} \cdots B_{n}$ and B_{1}, \ldots, B_{n} are erasable, then so is A.

$$
\begin{array}{llll}
S \rightarrow A c B & A \rightarrow C B C & B & \rightarrow a b B \\
& & C \rightarrow c C d \\
& B \rightarrow \lambda & & C \rightarrow B B
\end{array}
$$

We determine the set of erasable variables:

- B is erasable because of the rule $B \rightarrow \lambda$
- C is erasable because of $C \rightarrow B B$ and B is erasable
- A is erasable because of $A \rightarrow C B C$ and B, C are erasable So the variables A, B, C are erasable.

Removal of Lambda Rules

Theorem
For every context-free language L there exists a context-free grammar G without λ-rules such that $L(G)=L \backslash\{\lambda\}$.

Removal of Lambda Rules

Theorem

For every context-free language L there exists a context-free grammar G without λ-rules such that $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be a context-free grammar with $L(G)=L$.

Removal of Lambda Rules

Theorem

For every context-free language L there exists a context-free grammar G without λ-rules such that $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be a context-free grammar with $L(G)=L$.

- Determine all erasable variables (that is, variables $A \Rightarrow^{*} \lambda$).

Removal of Lambda Rules

Theorem

For every context-free language L there exists a context-free grammar G without λ-rules such that $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be a context-free grammar with $L(G)=L$.

- Determine all erasable variables (that is, variables $A \Rightarrow^{*} \lambda$).
- For every rule $A \rightarrow x B y$ with $B \Rightarrow^{*} \lambda$, add a rule $A \rightarrow x y$.

Removal of Lambda Rules

Theorem

For every context-free language L there exists a context-free grammar G without λ-rules such that $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be a context-free grammar with $L(G)=L$.

- Determine all erasable variables (that is, variables $A \Rightarrow^{*} \lambda$).
- For every rule $A \rightarrow x B y$ with $B \Rightarrow^{*} \lambda$, add a rule $A \rightarrow x y$.
- Remove all λ-production rules.

Removal of Lambda Rules

Theorem

For every context-free language L there exists a context-free grammar G without λ-rules such that $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be a context-free grammar with $L(G)=L$.

- Determine all erasable variables (that is, variables $A \Rightarrow^{*} \lambda$).
- For every rule $A \rightarrow x B y$ with $B \Rightarrow^{*} \lambda$, add a rule $A \rightarrow x y$.
- Remove all λ-production rules.

The resulting grammar G has the property $L(G)=L \backslash\{\lambda\}$.

Exercise

Consider the following grammar

$$
\begin{aligned}
S \rightarrow A B a C \quad A \rightarrow B C \quad & B \rightarrow b \mid \lambda \quad D \rightarrow d \\
& C \rightarrow D \mid \lambda
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rl}
S \rightarrow A B a C \quad A \rightarrow B C & B \rightarrow b \mid \lambda \quad D \rightarrow d \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

Exercise

Consider the following grammar

$$
\begin{array}{ll}
S \rightarrow A B a C & A \rightarrow B C \quad \\
& B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?
$\square A, B$ and C

Exercise

Consider the following grammar

$$
\begin{array}{ll}
S \rightarrow A B a C & A \rightarrow B C \quad \\
& B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

Exercise

Consider the following grammar

$$
\begin{array}{rlr}
S \rightarrow A B a C & A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda & D \rightarrow d
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C \\
& A \rightarrow B C \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rlr}
S \rightarrow A B a C & A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda & D \rightarrow d
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{array}{ll}
S & \rightarrow A B a C \mid B a C \\
A & \rightarrow B C \\
B & \\
b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{array}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rlr}
S \rightarrow A B a C & A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda & D \rightarrow d
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C \\
& A \rightarrow B C \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rlr}
S \rightarrow A B a C & A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda & D \rightarrow d
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C \mid A B a \\
& A \rightarrow B C \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rlr}
S \rightarrow A B a C & A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda & D \rightarrow d
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C|A B a| a C \\
& A \rightarrow B C \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rlr}
S \rightarrow A B a C & A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda & D \rightarrow d
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{array}{ll}
S \rightarrow A B a C|B a C| A a C|A B a| a C \mid B a & \\
A \rightarrow B C & \\
B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{array}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rl}
S \rightarrow A B a C \quad A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C|A B a| a C|B a| A a \\
& A \rightarrow B C \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rl}
S \rightarrow A B a C \quad A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C|A B a| a C|B a| A a \mid a \\
& A \rightarrow B C \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rl}
S \rightarrow A B a C \quad A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C|A B a| a C|B a| A a \mid a \\
& A \rightarrow B C \mid C \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rl}
S \rightarrow A B a C \quad A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C|A B a| a C|B a| A a \mid a \\
& A \rightarrow B C|C| B \\
& B \rightarrow b|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{rl}
S \rightarrow A B a C \quad A \rightarrow B C & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C|A B a| a C|B a| A a \mid a \\
& A \rightarrow B C|C| B|\lambda \quad C \rightarrow D| \lambda \quad D \rightarrow d \\
& B \rightarrow b \mid \lambda \quad C \quad l
\end{aligned}
$$

Exercise

Consider the following grammar

$$
\begin{array}{ll}
S \rightarrow A B a C \quad A \rightarrow B C \quad & B \rightarrow b \mid \lambda \\
& C \rightarrow D \mid \lambda
\end{array}
$$

What variables are erasable?

- A, B and C

Construct the resulting grammar after removing all λ-rules:

$$
\begin{aligned}
& S \rightarrow A B a C|B a C| A a C|A B a| a C|B a| A a \mid a \\
& A \rightarrow B C|C| B \quad \\
& B \rightarrow b
\end{aligned} \quad C \rightarrow D \quad D \rightarrow d
$$

Unit Production Rules

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called unit production rule (here $B \in V$).

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called unit production rule (here $B \in V$).
Theorem
For every context-free language L there is a context-free grammar G without λ - and unit-productions with $L(G)=L \backslash\{\lambda\}$.

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called unit production rule (here $B \in V$).

Theorem

For every context-free language L there is a context-free grammar G without λ - and unit-productions with $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be context-free, without λ-rules, and $L(G)=L \backslash\{\lambda\}$.

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called unit production rule (here $B \in V$).

Theorem

For every context-free language L there is a context-free grammar G without λ - and unit-productions with $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be context-free, without λ-rules, and $L(G)=L \backslash\{\lambda\}$.

- Determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$.

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called unit production rule (here $B \in V$).

Theorem

For every context-free language L there is a context-free grammar G without λ - and unit-productions with $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be context-free, without λ-rules, and $L(G)=L \backslash\{\lambda\}$.

- Determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$.
- Whenever $A \Rightarrow^{+} B$ and $B \rightarrow y$ is a rule, add a rule $A \rightarrow y$.

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called unit production rule (here $B \in V$).

Theorem

For every context-free language L there is a context-free grammar G without λ - and unit-productions with $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be context-free, without λ-rules, and $L(G)=L \backslash\{\lambda\}$.

- Determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$.
- Whenever $A \Rightarrow^{+} B$ and $B \rightarrow y$ is a rule, add a rule $A \rightarrow y$.
- Remove all unit production rules.

Removal of Unit Production Rules

A rule $A \rightarrow B$ is called unit production rule (here $B \in V$).

Theorem

For every context-free language L there is a context-free grammar G without λ - and unit-productions with $L(G)=L \backslash\{\lambda\}$.

Construction

Let G be context-free, without λ-rules, and $L(G)=L \backslash\{\lambda\}$.

- Determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$.
- Whenever $A \Rightarrow^{+} B$ and $B \rightarrow y$ is a rule, add a rule $A \rightarrow y$.
- Remove all unit production rules.

The resulting grammar G has no λ - and unit-productions and it has the property $L(G)=L \backslash\{\lambda\}$.

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions. (So no need to first remove λ-productions.)

We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a \mid B \\
& A \rightarrow a|b c| B \\
& B \rightarrow A \mid b b
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a \\
& A \rightarrow a|b c| B \\
& B \rightarrow A \mid b b
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a \mid b c \\
& A \rightarrow a|b c| B \\
& B \rightarrow A \mid b b
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \\
& A \rightarrow a|b c| B \\
& B \rightarrow A \mid b b
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \mid b b \\
& A \rightarrow a|b c| B \\
& B \rightarrow A \mid b b
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \mid b b \\
& A \rightarrow a|b c| B \mid A \\
& B \rightarrow A \mid b b
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \mid b b \\
& A \rightarrow a|b c| B|A| b b \\
& B \rightarrow A \mid b b
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \mid b b \\
& A \rightarrow a|b c| B|A| b b \\
& B \rightarrow A|b b| a
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \mid b b \\
& A \rightarrow a|b c| B|A| b b \\
& B \rightarrow A|b b| a \mid b c
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \mid b b \\
& A \rightarrow a|b c| B|A| b b \\
& B \rightarrow A|b b| a|b c| B
\end{aligned}
$$

Exercise

Remove all unit production rules from

$$
S \rightarrow A a|B \quad A \rightarrow a| b c|B \quad B \rightarrow A| b b
$$

Note that there are no λ-productions.
(So no need to first remove λ-productions.)
We determine all pairs $A \neq B$ with $A \Rightarrow^{+} B$:

$$
S \Rightarrow^{+} B \quad A \Rightarrow^{+} B \quad B \Rightarrow^{+} A \quad S \Rightarrow^{+} A
$$

Thus we add the following rules:

$$
\begin{aligned}
& S \rightarrow A a|B| a|b c| A \mid b b \\
& A \rightarrow a|b c| B|A| b b \\
& B \rightarrow A|b b| a|b c| B
\end{aligned}
$$

Removing all unit production rules yields the final result:

$$
S \rightarrow a|b b| b c|A a \quad A \rightarrow a| b b|b c \quad B \rightarrow a| b b \mid b c
$$

Chomsky Normal Form

Chomsky Normal Form

In a grammar in Chomsky normal form all rules have the form

$$
A \rightarrow B C \text { or } A \rightarrow a
$$

Chomsky Normal Form

In a grammar in Chomsky normal form all rules have the form

$$
A \rightarrow B C \text { or } A \rightarrow a
$$

Note that a grammar in Chomsky normal form contains

- no λ-production rules,
- no unit production rules.

Chomsky Normal Form

In a grammar in Chomsky normal form all rules have the form

$$
A \rightarrow B C \text { or } A \rightarrow a
$$

Note that a grammar in Chomsky normal form contains

- no λ-production rules,
- no unit production rules.

Theorem

For every context-free language L there is a grammar G in Chomsky normal form with $L(G)=L \backslash\{\lambda\}$.

Chomsky Normal Form

Construction

Let G be a context-free grammar without λ - and unit-productions and $L(G)=L \backslash\{\lambda\}$.

Chomsky Normal Form

Construction

Let G be a context-free grammar without λ - and unit-productions and $L(G)=L \backslash\{\lambda\}$.

- Introduce variables C_{a} and rules $C_{a} \rightarrow$ a for every $a \in T$.

Chomsky Normal Form

Construction

Let G be a context-free grammar without λ - and unit-productions and $L(G)=L \backslash\{\lambda\}$.

- Introduce variables C_{a} and rules $C_{a} \rightarrow$ a for every $a \in T$.
- Replace every rule $A \rightarrow x_{1} \cdots x_{n}\left(x_{i} \in V \cup T\right)$ with $n \geq 2$ by

$$
A \rightarrow \sigma\left(x_{1}\right) \cdots \sigma\left(x_{n}\right) \quad \text { where } \quad \sigma(x)= \begin{cases}x, & \text { if } x \in V \\ C_{x}, & \text { if } x \in T\end{cases}
$$

Chomsky Normal Form

Construction

Let G be a context-free grammar without λ - and unit-productions and $L(G)=L \backslash\{\lambda\}$.

- Introduce variables C_{a} and rules $C_{a} \rightarrow$ a for every $a \in T$.
- Replace every rule $A \rightarrow x_{1} \cdots x_{n}\left(x_{i} \in V \cup T\right)$ with $n \geq 2$ by

$$
A \rightarrow \sigma\left(x_{1}\right) \cdots \sigma\left(x_{n}\right) \quad \text { where } \quad \sigma(x)= \begin{cases}x, & \text { if } x \in V \\ C_{x}, & \text { if } x \in T\end{cases}
$$

- Replace every $A \rightarrow B_{1} \cdots B_{n}$ with $n \geq 3$ by

$$
A \rightarrow B_{1} \cdots B_{n-2} C \quad C \rightarrow B_{n-1} B_{n}
$$

where C is a fresh variable.

Chomsky Normal Form

Construction

Let G be a context-free grammar without λ - and unit-productions and $L(G)=L \backslash\{\lambda\}$.

- Introduce variables C_{a} and rules $C_{a} \rightarrow a$ for every $a \in T$.
- Replace every rule $A \rightarrow x_{1} \cdots x_{n}\left(x_{i} \in V \cup T\right)$ with $n \geq 2$ by

$$
A \rightarrow \sigma\left(x_{1}\right) \cdots \sigma\left(x_{n}\right) \quad \text { where } \quad \sigma(x)= \begin{cases}x, & \text { if } x \in V \\ C_{x}, & \text { if } x \in T\end{cases}
$$

- Replace every $A \rightarrow B_{1} \cdots B_{n}$ with $n \geq 3$ by

$$
A \rightarrow B_{1} \cdots B_{n-2} C \quad C \rightarrow B_{n-1} B_{n}
$$

where C is a fresh variable.
Repeat the last step until all rules are in Chomsky normal form.

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.
We continue the transformation:

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.
We continue the transformation:

$$
\begin{aligned}
S & \rightarrow a S b X \mid a \\
X & \rightarrow X a \mid a b a \\
C_{a} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.
We continue the transformation:

$$
\begin{aligned}
S & \rightarrow C_{a} S C_{b} X \mid a \\
X & \rightarrow X a \mid a b a \\
C_{a} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.
We continue the transformation:

$$
\begin{aligned}
S & \rightarrow C_{a} S C_{b} X \mid a \\
X & \rightarrow X C_{a} \mid a b a \\
C_{a} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.
We continue the transformation:

$$
\begin{aligned}
S & \rightarrow C_{a} S C_{b} X \mid a \\
X & \rightarrow X C_{a} \mid C_{a} C_{b} C_{a} \\
C_{a} & \rightarrow a \\
C_{b} & \rightarrow b
\end{aligned}
$$

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.
We continue the transformation:

$$
\begin{array}{rlrl}
S & \rightarrow C_{a} S_{2} \mid a & S_{2} \rightarrow S S_{3} \quad S_{3} \rightarrow C_{b} X \\
X & \rightarrow X C_{a} \mid C_{a} C_{b} C_{a} & \\
C_{a} & \rightarrow a & \\
C_{b} & \rightarrow b
\end{array}
$$

Exercise

Transform the following context-free grammar

$$
\begin{aligned}
& S \rightarrow a S b X \mid a \\
& X \rightarrow X a \mid a b a
\end{aligned}
$$

into Chomsky normal form.
The λ-rules and unit-rules have already been removed.
We continue the transformation:

$$
\begin{array}{rlr}
S \rightarrow C_{a} S_{2} \mid a & S_{2} \rightarrow S S_{3} \quad S_{3} \rightarrow C_{b} X \\
X & \rightarrow X C_{a} \mid C_{a} X_{2} & X_{2} \rightarrow C_{b} C_{a} \\
C_{a} & & \\
C_{b} \rightarrow b & & \\
& &
\end{array}
$$

