\begin{frame}{Exercises (2)}
\begin{exampleblock}{}
\emph{Show that the following language is context-free:}
\begin{talign}
L = \Sigma^* \setminus \{\, ww \mid w \in \Sigma^* \,\}
\end{talign}
where $\Sigma = \{a,b\}$.
\pause
What shape do words $w \in L$ have?
\begin{itemize}
\pause
\item $w$ has \emph{odd length}; \vspace{-.5ex}
\pause
\item $w$ has \emph{even length} such that \pause $w = uv$ with $|u| = |v|$ and \pause %\vspace{-.5ex}
\begin{talign}
u(m) \ne v(m)
\end{talign}
for some $0 \le m < |u|$. \pause Let $n = |u| - m-1$. Then $w$ is in
\begin{talign}
\begin{aligned}
&\,\Sigma^m \, \{\,a\,\} \, \Sigma^n \,\, \Sigma^m \, \{\,b\,\} \, \Sigma^n \\
\cup\; &\underbrace{\Sigma^m \, \{\,b\,\} \, \Sigma^n}_{u} \, \underbrace{\Sigma^m \, \{\,a\,\} \, \Sigma^n}_{v}
\end{aligned}
\mpause[1]{
&& \raisebox{1.5ex}{$=$} &&
\begin{aligned}
&\,\Sigma^m \, \{\,a\,\} \, \Sigma^m \,\, \Sigma^n \, \{\,b\,\} \, \Sigma^n \\
\cup\; &\underbrace{\Sigma^m \, \{\,b\,\} \, \Sigma^m}_{u} \, \underbrace{\Sigma^n \, \{\,a\,\} \, \Sigma^n}_{v}
\end{aligned}
}
\end{talign}
\end{itemize}
\pause\pause\vspace{-.5ex}
We give a context-free grammar for the language:
\begin{talign}
S &\to AB \mid BA \mpause[1]{\mid A \mid B} &
A &\to XAX \mid a & X \to a \mid b\\
&&
B &\to XBX \mid b
\end{talign}
\end{exampleblock}
\pause\bigskip
\end{frame}