Automata Theory :: Pumping Lemma

Jörg Endrullis

Vrije Universiteit Amsterdam

Non-Regular Languages

Theorem

 $L = \{ a^n b^n \mid n \ge 0 \}$ is **not** regular.

Proof.

For a contradiction, assume that L was regular.

Then there exists a DFA $M = (Q, \{a, b\}, \delta, q_0, F)$ with L(M) = L.

Because Q is finite, we have

$$q_0 \xrightarrow{a^k} q \xrightarrow{a^\ell} q$$

for some $\ell \geq 1$ and $q \in Q$. Then for some $q' \in Q$

$$q_0 \xrightarrow{a^k} q \xrightarrow{b^k} q'$$
 $q_0 \xrightarrow{a^k} q \xrightarrow{a^\ell} q \xrightarrow{b^k} q'$

Then $q' \in F$ since $a^k b^k \in L$. However, $q' \notin F$ since $a^{k+\ell} b^k \notin L$.

Contradiction, thus *L* is not regular.

We generalise the idea of the proof...

Pumping Lemma for Regular Languages (1959)

Pumping Lemma

Let L be a regular language. There exists m > 0 such that every $w \in L$ with $|w| \ge m$ can be written in the form

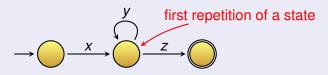
$$W = XYZ$$

with $|xy| \le m$ and $|y| \ge 1$, and $xy^iz \in L$ for every $i \ge 0$.

Proof.

We have L = L(M) for some DFA M with m states.

When *M* reads $w \in L$ with $|w| \ge m$, there must be a cycle



with $|xy| \le m$ and $|y| \ge 1$. Then $xy^iz \in L$ for every $i \ge 0$.

Pumping Lemma Example

The **pumping lemma** can be used to prove that a language is **not regular**.

Assume that $L = \{ w \in \{a, b\}^* \mid w = w^R \}$ is regular.

By the pumping lemma there exists m > 0 such that

$$a^mba^m=xyz$$

with $|xy| \le m$, $|y| \ge 1$, and $xy^iz \in L$ for every $i \ge 0$.

Since $|xy| \le m$ and $|y| \ge 1$, it follows that

$$x = a^j$$

and

$$y = a^k$$

with $j \ge 0$ and $k \ge 1$.

However $xyyz = a^{m+k}ba^m \notin L$. Contradiction!

Thus *L* is not regular.

Using the Pumping Lemma

Attention

A contradiction for specific m, x, y, or z is not sufficient!

Pumping property as formula (note the quantifiers):

```
\exists m > 0.
\forall w \in L \text{ with } |w| \ge m.
\exists x, y, z \text{ with } w = xyz, |xy| \le m, |y| \ge 1.
\forall i \ge 0. xy^i z \in L
```

To **contradict the pumping property**, we prove the negation:

```
\forall m > 0.
\exists w \in L \text{ with } |w| \ge m.
\forall x, y, z \text{ with } w = xyz, |xy| \le m, |y| \ge 1.
\exists i \ge 0. xy^i z \notin L
```

Pumping Lemma as a Game

To **contradict the pumping property**, we prove the negation:

```
\forall m > 0.
\exists w \in L \text{ with } |w| \ge m.
\forall x, y, z \text{ with } w = xyz, |xy| \le m, |y| \ge 1.
\exists i \ge 0. xy^i z \notin L
```

Pumping Lemma as a Game

Given is a language L. We want to prove that L is not regular.

- 1. Opponent picks *m*.
- 2. We choose a word $w \in L$ with |w| > m.
- 3. Opponent picks x, y, z with w = xyz, $|xy| \le m$ and $|y| \ge 1$.
- 4. If we can find $i \ge 0$ such that $xy^iz \notin L$, then we win.

If we can always win, L does not have the pumping property!

Who wins the game when *L* is finite?

Exercise (1)

Use the pumping lemma to show that

$$L = \{ a^n b^n \mid n \ge 0 \}$$

is not regular. Assume that L was regular.

By the pumping lemma there exists m > 0 such that

$$a^m b^m = xyz$$

 $v = a^k$

with $|xy| \le m$, $|y| \ge 1$, and $xy^iz \in L$ for every $i \ge 0$.

Since $|xy| \le m$ and $|y| \ge 1$, it follows that

$$x = a^j$$
 and

with $j \ge 0$ and $k \ge 1$.

However $xy^0z = xz = a^{m-k}b^m \notin L$. Contradiction!

Thus *L* is not regular.

Exercise (2)

Use the pumping lemma to show that

$$L = \{ a^{2^k} \mid k \ge 0 \}$$

is not regular. Assume that *L* was regular.

By the pumping lemma there exists m > 0 such that

$$a^{2^m} = xyz$$

with $|xy| \le m$, $|y| \ge 1$, and $xy^iz \in L$ for every $i \ge 0$.

Since $|xy| \le m$ and $|y| \ge 1$, it follows that

$$x = a^j$$
 and $y = a^k$

with $j \ge 0$, $k \ge 1$ and $j + k \le m$.

We have $k \le m < 2^m$ and hence $2^m < 2^m + k < 2^{m+1}$.

Contradiction: $xy^2z = a^{2^m+k} \notin L!$ Thus L is not regular.