Automata Theory :: Pumping Lemma

Jörg Endrullis

Vrije Universiteit Amsterdam

Non-Regular Languages

Theorem

$L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.

Proof.

For a contradiction, assume that L was regular.
Then there exists a DFA $M=\left(Q,\{a, b\}, \delta, q_{0}, F\right)$ with $L(M)=L$.
Because Q is finite, we have

$$
q_{0} \xrightarrow{a^{k}} q \xrightarrow{a^{e}} q
$$

for some $\ell \geq 1$ and $q \in Q$. Then for some $q^{\prime} \in Q$

$$
q_{0} \xrightarrow{a^{k}} q \xrightarrow{b^{k}} q^{\prime} \quad q_{0} \xrightarrow{a^{k}} q \xrightarrow{a^{l}} q \xrightarrow{b^{k}} q^{\prime}
$$

Then $q^{\prime} \in F$ since $a^{k} b^{k} \in L$. However, $q^{\prime} \notin F$ since $a^{k+\ell} b^{k} \notin L$.
Contradiction, thus L is not regular.
We generalise the idea of the proof. . .

Pumping Lemma for Regular Languages (1959)

Pumping Lemma

Let L be a regular language. There exists $m>0$ such that every $w \in L$ with $|w| \geq m$ can be written in the form

$$
w=x y z
$$

with $|x y| \leq m$ and $|y| \geq 1$, and $x y^{i} z \in L$ for every $i \geq 0$.

Proof.

We have $L=L(M)$ for some DFA M with m states.
When M reads $w \in L$ with $|w| \geq m$, there must be a cycle

with $|x y| \leq m$ and $|y| \geq 1$. Then $x y^{i} z \in L$ for every $i \geq 0$.

Pumping Lemma Example

The pumping lemma can be used to prove that a language is not regular.

Assume that $L=\left\{w \in\{a, b\}^{*} \mid w=w^{R}\right\}$ is regular.
By the pumping lemma there exists $m>0$ such that

$$
a^{m} b a^{m}=x y z
$$

with $|x y| \leq m,|y| \geq 1$, and $x y^{i} z \in L$ for every $i \geq 0$.
Since $|x y| \leq m$ and $|y| \geq 1$, it follows that

$$
x=a^{j} \quad \text { and } \quad y=a^{k}
$$

with $j \geq 0$ and $k \geq 1$.
However $x y y z=a^{m+k} b a^{m} \notin L$. Contradiction!
Thus L is not regular.

Using the Pumping Lemma

Attention

A contradiction for specific m, x, y, or z is not sufficient!
Pumping property as formula (note the quantifiers):

$$
\begin{aligned}
& \exists m>0 \\
& \quad \forall w \in L \text { with }|w| \geq m . \\
& \quad \exists x, y, z \text { with } w=x y z,|x y| \leq m,|y| \geq 1 \\
& \quad \forall i \geq 0 . x y^{i} z \in L
\end{aligned}
$$

To contradict the pumping property, we prove the negation:

$$
\begin{aligned}
& \forall m>0 . \\
& \quad \exists w \in L \text { with }|w| \geq m . \\
& \quad \forall x, y, z \text { with } w=x y z,|x y| \leq m,|y| \geq 1 . \\
& \quad \exists i \geq 0 . x y^{i} z \notin L
\end{aligned}
$$

Pumping Lemma as a Game

To contradict the pumping property, we prove the negation:

$$
\begin{aligned}
& \forall m>0 . \\
& \quad \exists w \in L \text { with }|w| \geq m . \\
& \quad \forall x, y, z \text { with } w=x y z,|x y| \leq m,|y| \geq 1 . \\
& \quad \exists i \geq 0 . x y^{i} z \notin L
\end{aligned}
$$

Pumping Lemma as a Game

Given is a language L. We want to prove that L is not regular.

1. Opponent picks m.
2. We choose a word $w \in L$ with $|w| \geq m$.
3. Opponent picks x, y, z with $w=x y z,|x y| \leq m$ and $|y| \geq 1$.
4. If we can find $i \geq 0$ such that $x y^{i} z \notin L$, then we win.

If we can always win, L does not have the pumping property!
Who wins the game when L is finite?

Exercise (1)

Use the pumping lemma to show that

$$
L=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

is not regular. Assume that L was regular.
By the pumping lemma there exists $m>0$ such that

$$
a^{m} b^{m}=x y z
$$

with $|x y| \leq m,|y| \geq 1$, and $x y^{i} z \in L$ for every $i \geq 0$.
Since $|x y| \leq m$ and $|y| \geq 1$, it follows that

$$
x=a^{j} \quad \text { and } \quad y=a^{k}
$$

with $j \geq 0$ and $k \geq 1$.
However $x y^{0} z=x z=a^{m-k} b^{m} \notin L$. Contradiction!
Thus L is not regular.

Exercise (2)

Use the pumping lemma to show that

$$
L=\left\{a^{2^{k}} \mid k \geq 0\right\}
$$

is not regular. Assume that L was regular.
By the pumping lemma there exists $m>0$ such that

$$
a^{2^{m}}=x y z
$$

with $|x y| \leq m,|y| \geq 1$, and $x y^{i} z \in L$ for every $i \geq 0$.
Since $|x y| \leq m$ and $|y| \geq 1$, it follows that

$$
x=a^{j} \quad \text { and } \quad y=a^{k}
$$

with $j \geq 0, k \geq 1$ and $j+k \leq m$.
We have $k \leq m<2^{m}$ and hence $2^{m}<2^{m}+k<2^{m+1}$.
Contradiction: $x y^{2} z=a^{2^{m}+k} \notin L!$ Thus L is not regular.

