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We generalise the idea of the proof...
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Pumping Lemma

Let L be a regular language. There exists m > 0 such that
every w € L with [w| > m can be written in the form

W = Xyz

with [xy| < mand |y| > 1, and xy'z < L for every i > 0.

Proof.
We have L = L(M) for some DFA M with m states.

When M reads w € L with |[w| > m, there must be a cycle

(}’7 first repetition of a state
-0~

with [xy| < mand |y| > 1. Then xy’z € L for every j > 0.
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Pumping property as formula (note the quantifiers):
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Vw € L with [w| > m.
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To contradict the pumping property, we prove the negation:
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vm > 0.
Jw e L with jw| > m.
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Pumping Lemma as a Game

Given is a language L. We want to prove that L is not regular.
1. Opponent picks m.
2. We choose a word w € L with |w| > m.
3. Opponent picks x, y, z with w = xyz, |[xy| < mand |y| > 1.
4. If we can find i > 0 such that xy’z ¢ L, then we win.

If we can always win, L does not have the pumping property!

Who wins the game when L is finite?
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