\begin{frame}{Using the Pumping Lemma}
\begin{alertblock}{Attention}
A contradiction for specific $m$, $x$, $y$, or $z$ is \alert{not sufficient}!
\end{alertblock}
\pause
\begin{goal}{}
Pumping property as formula (\alert{note the quantifiers}):
\begin{talign}
&\exists m>0.\\[-.5ex]
&\qquad \forall w\in L \text{ with } |w|\geq m.\\[-.5ex]
&\qquad\qquad \exists x,y,z \text{ with } w=xyz,\; |xy| \leq m,\; |y|\geq 1.\\[-.5ex]
&\qquad\qquad\qquad \forall i \geq 0.\, xy^iz\in L
\end{talign}
\end{goal}
\pause
\begin{goal}{}
To \emph{contradict the pumping property}, we prove the negation:
\begin{talign}
&\alert{\forall} m>0.\\[-.5ex]
&\qquad \alert{\exists} w\in L \text{ with } |w|\geq m.\\[-.5ex]
&\qquad\qquad \alert{\forall} x,y,z \text{ with } w=xyz,\; |xy| \leq m,\; |y|\geq 1.\\[-.5ex]
&\qquad\qquad\qquad \alert{\exists} i \geq 0.\, xy^iz \alert{\not\in} L
\end{talign}
\end{goal}
\end{frame}