\begin{frame}{Non-Regular Languages}
\begin{block}{Theorem}
$L = \{\, a^n b^n \mid n \geq 0\, \} $ is \emph{not} regular.
\end{block}
\pause
\begin{proof}
For a contradiction, assume that $L$ was regular.
\pause\medskip
Then there exists a DFA $M = (Q,\{a,b\},\delta,q_0,F)$ with $L(M) = L$.
\pause\medskip
Because $Q$ is finite, we have
\begin{talign}
q_0 \apath{a^k} q \apath{a^\ell} q
\end{talign}
for some $\ell \ge 1$ and $q \in Q$.
\pause
Then for some $q' \in Q$
\begin{talign}
q_0 \apath{a^k} q \apath{b^k} q' &&
q_0 \apath{a^k} q \apath{a^\ell} q \apath{b^k} q' &&
\end{talign}
\pause
Then $q' \in F$ since \alert{$a^k b^k \in L$}. \pause However, $q' \not\in F$ since \alert{$a^{k+\ell} b^k \not\in L$}.\\
\pause\medskip
\alert{Contradiction}, thus $L$ is not regular.
\end{proof}
\pause
We generalise the idea of the proof\ldots
\end{frame}