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Decidability

A decision problem P is a language P ⊆ Σ∗.

The problem P is called
decidable if the P is recursive, otherwise undeciable,

semidecidable if the P is recursively enumerable.

Decidable problem:
algorithm that always halts

always answers yes or no

Semidecidable problem:
algorithm halts (eventually) it the answer is yes (w ∈ P),

may or may not halt if the answer is no (w 6∈ P).

(Problem: one cannot know how long to wait for an answer.)
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Decidability

A decision problem P is decidable if
P is semidecidable, and

P is semidecidable.

The following question is undecidable, but semidecidable:

Halting problem
Does TM M reach a halting state for input w? (Input: M and w .)

(Semidecidable: execute M on w and wait.)

The following question not decidable and not semidecidable:

Universal halting problem
Does TM M reach a halting state on all w ∈ Σ∗? (Input: M.)

(The complement is also not semidecidable.)
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The Halting Problem (1936)

The halting problem is: given
a deterministic Turing machine M and

a word x ,
does M reach a halting state when started with input x?

The halting problem can be viewed as a language H

H = { (M, x) | M reaches a halting state on input x }

M is an encoding of a deterministic Turing machine as a word.

Theorem
The halting problem H is undecidable.

(The language H is not recursive.)
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The Halting Problem is Undecidable (Proof 1)

Proof.
Assume that there was a deterministic TM H that, given (M, x)
decides whether M halts on x ( that is, (M, x) ∈ H ).

Then every recursively enumerable language was recursive:

Let M be a deterministic Turing machine and x a word.

We can decide x ∈ L(M) as follows:
If according to H, M does not halt on x ,
then x 6∈ L(M).

If according to H, M halts on x ,
then execute M on x to see whether x ∈ L(M).

The algorithm always terminates, so L(M) is recursive.

Contradiction: not every recursively enumerable language is
recursive.
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The Halting Problem is Undecidable (Proof 2)

Assume there would be a program T with the behaviour:
input: a program M
output: yes if M terminates on input M, no otherwise

p = read input;
...

print result;
program T

if result = yes
then loop forever
else terminate

program T ′

What happens if we run T ′ with input T ′?
initial part T decides whether T ′ terminates on input T ′

if the result is yes, then T ′ runs forever Contradiction
if the result is no, then T ′ terminates Contradiction

Thus T cannot exist! The halting problem is undecidable!
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Theorem of Rice (1951)

A property of a class K is trivial if it holds for all or no k ∈ K .

Theorem of Rice
Every non-trivial property P of recursively enumerable
languages is undecidable.

Proof.
Assume that P(∅) (if not, take ¬P).
Let L0 be a recursively enumerable language with ¬P(L0).

Let L be recursively enumerable. We decide x ∈ L(M)!

For a word x , we construct a Turing machine Mx with

L(Mx) = ∅ if x 6∈ L L(Mx) = L0 if x ∈ L

Mx accepts y if x ∈ L and y ∈ L0. Then x 6∈ L ⇐⇒ P(L(Mx)).

Contradiction: decidability of P =⇒ L recursive.
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Theorem of Rice: Example

For recursively enumerable languages L, the following
questions are undecidable:

1. Is a ∈ L?
2. Is L finite?



Post Correspondence Problem (1946)

Post Correspondence Problem (PCP)
Given n pairs of words:

(w1, v1), . . . , (wn, vn)

Are there indices i1, i2 . . . , ik (k ≥ 1) s.t.

wi1wi2 · · ·wik = vi1vi2 · · · vik ?
Emil Post

(1897-1954)

Exercise
Find a solution for

(w1, v1) = (01,100)
(w2, v2) = (1,011)
(w3, v3) = (110,1)
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Modified Post Correspondence Problem

We will show that the PCP is undecidable.

We first prove that the modified PCP (MPCP) is undecidable.

Modified PCP (MPCP)
Given n pairs of words:
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Modified Post Correspondence Problem

Theorem
The modified PCP is undecidable.

Proof.
Let G = (V ,T ,S,P) be an unrestricted grammar.

We define (where F and E are fresh):

w1 = F v1 = FS ⇒
w2 = ⇒ wE v2 = E

... x ... y (x → y ∈ P)

a a (a ∈ T )

A A (A ∈ V )⇒ ⇒
This MPCP has a solution ⇐⇒ w ∈ L(G).

Contradiction: If the MPCP was decidable, then w ∈ L(G) was
decidable for unrestricted grammars G!
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Example

S → AA A → aB | Bb BB → aa

This grammar with w = aaab translates to the following MPCP:

i wi vi i wi vi

1 F FS ⇒ 7 ⇒ ⇒
2 ⇒ aaabE E 8 a a
3 S AA 9 b b
4 A aB 10 A A
5 A Bb 11 B B
6 BB aa 12 S S

Example derivation: S ⇒ AA ⇒ aBA ⇒ aBBb ⇒ aaab.

wi :

1

F
3

S
7⇒ 4

A
10

A
7⇒ 8

a
11

B
5

A
7⇒ 8

a
6

B B
9

b
2⇒ a a a b E

vi :

F S ⇒
1

A A
3

⇒
7

a B
4

A
10

⇒
7

a
8

B
11

B b
5

⇒
7

a
8

a a
6

b
9

E
2
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Post Correspondence Problem

Theorem
The PCP is undecidable.

Proof.
Given an MPCP X : (w1, v1), . . . , (wn, vn) where

wi = ai1 · · · aimi and vi = bi1 · · · biri (with mi + ri > 0)
We define PCP X ′ (y0, z0), . . . , (yn+1, zn+1) by:

y0 = @$y1 yi = ai1$ai2$ · · · aimi $ yn+1 = #

z0 = @z1 zi = $bi1$bi2 · · · $biri zn+1 = $#
for 1 ≤ i ≤ n. The letters @, $ and # are fresh.

Every PCP X ′ solution must start with (y0, z0):
y0yj · · · ykyn+1 = z0zj · · · zkzn+1

Solution exists ⇐⇒ w1wj · · ·wk = v1vj · · · vk is a solution of X .

As the MPCP is undecidable, so must be the PCP.
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Example

Consider the following instance of the MPCP:

w1 = 11 w2 = 1
v1 = 1 v2 = 11

It reduces to the following PCP problem:

y0 = @$1$1$ y1 = 1$1$ y2 = 1$ y3 = #

z0 = @$1 z1 = $1 z2 = $1$1 z3 = $#

Example solution MPCP:

w1w2 = 111 = v1v2

Corresponding solution PCP:

y0y2y3 = @$1$1$1$# = z0z2z3

In general: the original MPCP instance has a solution⇐⇒ the resulting PCP instance has a solution
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Undecidable Properties of Context-Free Languages

Undecidable properties of context-free languages:
empty intersection,

ambiguity,

palindromes,

equality,

. . .



Empty Intersection of Context-Free Languages

Theorem
The question L1 ∩ L2 = ∅ ? for context-free languages L1, L2 is
undecidable.

Proof.
We reduce the PCP to the above problem.

Given a PCP instance X : (w1, v1), . . . , (wn, vn).

We define two context-free grammars G1 and G2:

S1 → wiS1〈i〉 | wi # 〈i〉
S2 → vi S2〈i〉 | vi # 〈i〉

for 1 ≤ i ≤ n. Here #, 〈 and 〉 are fresh symbols. Then

L(G1) = {wj · · ·wk # 〈k〉 · · · 〈j〉 | 1 ≤ j , . . . , k ≤ n}
L(G2) = {v` · · · vm # 〈m〉 · · · 〈`〉 | 1 ≤ `, . . . ,m ≤ n}

L(G1) ∩ L(G2) = ∅ ⇐⇒ the PCP X has no solution.
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Equality of Context-Free Languages

Theorem
The question L = Σ∗ ? (and hence L1 = L2 ?) for context-free
languages L (L1,L2) is undecidable.

Proof
Given a PCP X : (w1, v1), . . . , (wn, vn). Define G1 and G2:
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as before. Then

PCP X has no solution ⇐⇒ L(G1) ∩ L(G2) = ∅

⇐⇒ L(G1) ∩ L(G2) = ∅⇐⇒ L(G1) ∪ L(G2) = Σ
∗

It suffices to show that L(G1) ∪ L(G2) is context-free.

It suffices that L(G1) is context-free (L(G2) is analogous).
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Equality of Context-Free Languages (2)

Proof continued

S1 → wiS1〈i〉 | wi # 〈i〉

The words in L(G1) are of the form
wj · · ·wk # 〈k〉 · · · 〈j〉 for non-empty indices 1 ≤ j , . . . , k ≤ n

All these words are of the shape
LS = Σ∗ · { # } · { 〈1〉, . . . , 〈n〉 }+.

We have L(G1) ⊆ LS, so
L(G1) = Σ

∗ \ L(G1) = (LS ∪ LS) \ L(G1) = (LS \ L(G1)) ∪ LS

As LS is regular, also LS is regular (and context-free).

So it suffices to show that LS \ L(G1) is context-free.

The words in LS \ L(G1) are of the form:
LS \ L(G1) = {w # 〈k〉 · · · 〈j〉 | w 6= wj · · ·wk }

We distinguish three cases. . .
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Equality of Context-Free Languages (3)

Proof continued
The words in LS \ L(G1) are of the form:

LS \ L(G1) = {w # 〈k〉 · · · 〈j〉 | w 6= wj · · ·wk }

We distinguish three cases:

LS \ L(G1) = Lsmaller ∪ Llarger ∪ Lequal

where

Lsmaller = {w # 〈k〉 · · · 〈j〉 | |w | < |wj · · ·wk |}

Llarger = {w # 〈k〉 · · · 〈j〉 | |w | > |wj · · ·wk |}

Lequal = {w # 〈k〉 · · · 〈j〉 | |w | = |wj · · ·wk | & w 6= wj . . .wk }

Each of these languages is context-free, thus LS \ L(G1) is.

Exercise
Give context-free grammars for Lsmaller, Llarger and Lequal.
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Semidecidability

Recall that a decision P ⊆ Σ∗ is called
decidable if the P is recursive,

semidecidable if the P is recursively enumerable.

Examples of (undecidable but) semidecidable problems:
halting problem,

Post correspondence problem,

non-empty intersection of context-free languages,

ambiguity of context-free grammars.

There exist algorithms for these problems that always halt if the
answer is yes, but may or may not halt if the answer is no.
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More Undecidable Problems

Derivability of a formula φ in predicate logic is undecidable.

(Logic and Modelling)

In 1900 David Hilbert (1862-1941) formulated 23 scientific
problems. Among them the following:

Diophantine equations consist of polynomials with one or
more variables and coefficients in Z. For example:

3x2y − 7y2z3 − 18 = 0

−7y2 + 8z3 = 0

Hilbert’s 10th problem: Give an algorithm to decide whether a
system of Diophantine equations has a solution in Z.

In 1970 Yuri Matiyasevich proved that this is undecidable.
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