Automata Theory :: Minimal DFAs

Jorg Endrullis

Vrije Universiteit Amsterdam

Minimal DFAs (Hopcroft, 1971)

Goal
GivenaDFAM = (Q, %, 5, qu, F).

Construct the (unique) minimal DFA M with L(M) = L(M).

(Here minimal is with respect to the number of states.)

Construction
Step 1: Remove all unreachable states from M.

Step 2: Partition Q in indistinguishable states.
Step 3: Read off the minimal DFA.

Step 1: Remove all unreachable states from M.

Remove all states g € Q for which there is no path from gy to g.

Minimal DFAs (2)

States g1, g> € Q are distinguishable if there exists w € £* s..
—»qeF R—»qG¢eF,

or vice versa.

Step 2: Partition Q in indistinguishable states.
We construct the partitioning stepwise:
® |nitial partitioning is { Q\ F, F}.
m |f there are partitions R and S such that
5(g,a) €S and 5(q',a) € S,
forsome a€ X and q,q’ € R, then we split R in
{ge R|d(qg,a) € S} {geRlé(g,a) ¢S}

We keep splitting until no more split is possible.

Minimal DFAs (3)

Step 3: Read off the minimal DFA.
Let Q4,..., Qn be the final partition of Q.
These are the states of the minimal DFA M.
The transitions (arrows) of M are:
Q3Q < qg2qforsomeqeQ;,q €qQ
The starting state is the set that contains qg.

The final states are the subsets of F.

Worst-case time complexity: O(|Z|-|QJ?), since
® There are maximal |Q| — 1 splits.
m Every split costs maximal O(|Z|-|Q)).

Exercise: DFA Minimisation

1. All states are reachable (nothlng to remove).

2. Initial partitioning: { Q\ F, F} ={{ 0, 91,92, 93 },{ qa }}

Splitting R ={ g0, 91, g2, g3 } with S ={q4 } and letter b € £.
New partitioning: {{qo },{ g1, 92,93 ,,{qa } -

Splitting R ={ g1, g2, g3 } with S ={ qo } and letter a € X.
New partitioning: {{qo },{ 1,92 },{ g3 },{qa } }-

Nothing more to split!

Exercise: DFA Minimisation

/a a\
~ @, @=@D»
X/

2. Final partitioning: {{qo },{ g1, g2 },{ gz ,{qs }
3. Reading off the minimal DFA:

*‘bab‘i)
\/

Minimising of NFAs

Minimising of NFAs is very difficult.

Example
—0=—=0 —0
L% b
b
c lb c bL)C
\Q/ U
Theorem

Minimising of NFAs is PSpace-complete.

The definition of PSpace-complete follows later.

Lexical Analysis

Lexical Analysis

Lexical analysis converts a sequence of characters into a
sequence of tokens.

Programs that do lexical analysis are lexers or tokenizers.
For example the expression
sum = 15 + 2

could be converted to the sequence of tokens

token | token category

sum identifier

= assignment

15 integer literal
operator

2 integer literal

Allows to write parsers on the more abstract level of tokens.

Lexical Analysis

How to get from characters to tokens?

® Regular expressions ry,..., I, express the pattern.
Every regular expression corresponds to a token.

m |exical analysis repeatedly searches the longest prefix of
the input that is matched by one of the regular expressions.
This prefix is transformed into a token.

For improved performance:
m Regular expressions are translated minimal DFAs.

Parser/lexer generators like
® JavaCC
m LEX

generate the lexer automatically. Thereby regular expressions
or grammars are converted to minimal DFAs.

	pbs@ARFix@1:
	pbs@ARFix@4:
	pbs@ARFix@9:
	pbs@ARFix@16:
	pbs@ARFix@24:
	pbs@ARFix@26:
	pbs@ARFix@28:
	pbs@ARFix@29:
	pbs@ARFix@31:
	pbs@ARFix@36:

