
Automata Theory :: Minimal DFAs

Jörg Endrullis

Vrije Universiteit Amsterdam



Minimal DFAs (Hopcroft, 1971)

Goal
Given a DFA M = (Q, Σ, δ, q0,F ).

Construct the (unique) minimal DFA M̂ with L(M) = L(M̂).

(Here minimal is with respect to the number of states.)

Construction
Step 1: Remove all unreachable states from M.

Step 2: Partition Q in indistinguishable states.

Step 3: Read off the minimal DFA.

Step 1: Remove all unreachable states from M.

Remove all states q ∈ Q for which there is no path from q0 to q.



Minimal DFAs (2)

States q1,q2 ∈ Q are distinguishable if there exists w ∈ Σ∗ s.t.

q1
w−→−→ q ′1 ∈ F q2

w−→−→ q ′2 6∈ F ,

or vice versa.

Step 2: Partition Q in indistinguishable states.

We construct the partitioning stepwise:

Initial partitioning is {Q \ F , F }.

If there are partitions R and S such that

δ(q,a) ∈ S and δ(q ′,a) 6∈ S,

for some a ∈ Σ and q,q ′ ∈ R, then we split R in

{q ∈ R | δ(q,a) ∈ S } { q ∈ R | δ(q,a) 6∈ S }

We keep splitting until no more split is possible.



Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).



Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!



Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

2. Final partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.
3. Reading off the minimal DFA:

{q0} {q4}

{q1,q2}

{q3}

a

b a

b

a

b

a

b



Minimising of NFAs

Minimising of NFAs is very difficult.

Example
a

a
a a a

b
c

b c

a

b c

a

Theorem
Minimising of NFAs is PSpace-complete.

The definition of PSpace-complete follows later.



Lexical Analysis



Lexical Analysis

Lexical analysis converts a sequence of characters into a
sequence of tokens.

Programs that do lexical analysis are lexers or tokenizers.

For example the expression

sum = 15 + 2

could be converted to the sequence of tokens

token token category
sum identifier
= assignment
15 integer literal
+ operator
2 integer literal

Allows to write parsers on the more abstract level of tokens.



Lexical Analysis

How to get from characters to tokens?

Regular expressions r1, . . . , rn express the pattern.

Every regular expression corresponds to a token.

Lexical analysis repeatedly searches the longest prefix of
the input that is matched by one of the regular expressions.
This prefix is transformed into a token.

For improved performance:
Regular expressions are translated minimal DFAs.

Parser/lexer generators like
JavaCC

LEX
generate the lexer automatically. Thereby regular expressions
or grammars are converted to minimal DFAs.


	pbs@ARFix@1: 
	pbs@ARFix@4: 
	pbs@ARFix@9: 
	pbs@ARFix@16: 
	pbs@ARFix@24: 
	pbs@ARFix@26: 
	pbs@ARFix@28: 
	pbs@ARFix@29: 
	pbs@ARFix@31: 
	pbs@ARFix@36: 


