Automata Theory :: Minimal DFAs

Jörg Endrullis

Vrije Universiteit Amsterdam

Minimal DFAs (Hopcroft, 1971)

Goal

Given a DFA $M = (Q, \Sigma, \delta, q_0, F)$.

Construct the (unique) **minimal DFA** \widehat{M} with $L(M) = L(\widehat{M})$.

(Here minimal is with respect to the number of states.)

Construction

Step 1: Remove all unreachable states from *M*.

Step 2: Partition *Q* in indistinguishable states.

Step 3: Read off the minimal DFA.

Step 1: Remove all unreachable states from *M*.

Remove all states $q \in Q$ for which there is no path from q_0 to q.

Minimal DFAs (2)

States $q_1, q_2 \in Q$ are **distinguishable** if there exists $w \in \Sigma^*$ s.t. $q_1 \xrightarrow{w} q'_1 \in F$ $q_2 \xrightarrow{w} q'_2 \notin F$,

or vice versa.

Step 2: Partition *Q* in indistinguishable states.

We construct the partitioning stepwise:

- Initial partitioning is $\{ Q \setminus F, F \}$.
- If there are partitions *R* and *S* such that

 $\delta(q, a) \in S$ and $\delta(q', a) \notin S$,

for some $a \in \Sigma$ and $q, q' \in R$, then we split *R* in

 $\{ q \in R \mid \delta(q, a) \in S \}$ $\{ q \in R \mid \delta(q, a) \notin S \}$

We keep splitting until no more split is possible.

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q_1, \ldots, Q_n be the final partition of Q.

These are the states of the minimal DFA \widehat{M} .

The transitions (arrows) of \widehat{M} are:

 $egin{aligned} Q_i \stackrel{a}{
ightarrow} Q_j & \iff & q \stackrel{a}{
ightarrow} q' ext{ for some } q \in Q_i, \, q' \in Q_j \end{aligned}$

The starting state is the set that contains q_0 .

The final states are the subsets of *F*.

Worst-case time complexity: $O(|\Sigma| \cdot |Q|^2)$, since

- There are maximal |Q| 1 splits.
- Every split costs maximal $O(|\Sigma| \cdot |Q|)$.

Exercise: DFA Minimisation

- 1. All states are reachable (nothing to remove).
- 2. Initial partitioning: $\{Q \setminus F, F\} = \{\{q_0, q_1, q_2, q_3\}, \{q_4\}\}$

Splitting $R = \{q_0, q_1, q_2, q_3\}$ with $S = \{q_4\}$ and letter $b \in \Sigma$. New partitioning: $\{\{q_0\}, \{q_1, q_2, q_3\}, \{q_4\}\}$.

Splitting $R = \{q_1, q_2, q_3\}$ with $S = \{q_0\}$ and letter $a \in \Sigma$. New partitioning: $\{\{q_0\}, \{q_1, q_2\}, \{q_3\}, \{q_4\}\}$.

Nothing more to split!

Exercise: DFA Minimisation

- 2. Final partitioning: $\{\{q_0\}, \{q_1, q_2\}, \{q_3\}, \{q_4\}\}$.
- 3. Reading off the minimal DFA:

Minimising of NFAs

Minimising of NFAs is very difficult.

Example

Theorem

Minimising of NFAs is PSpace-complete.

The definition of PSpace-complete follows later.

Lexical Analysis

Lexical Analysis

Lexical analysis converts a sequence of characters into a sequence of tokens.

Programs that do lexical analysis are lexers or tokenizers.

For example the expression

sum = 15 + 2

could be converted to the sequence of tokens

token	token category
sum	identifier
=	assignment
15	integer literal
+	operator
2	integer literal

Allows to write parsers on the more abstract level of tokens.

Lexical Analysis

How to get from characters to tokens?

• Regular expressions r_1, \ldots, r_n express the pattern.

Every regular expression corresponds to a token.

 Lexical analysis repeatedly searches the longest prefix of the input that is matched by one of the regular expressions. This prefix is transformed into a token.

For improved performance:

Regular expressions are translated minimal DFAs.

Parser/lexer generators like

JavaCC

LEX

generate the lexer automatically. Thereby regular expressions or grammars are converted to minimal DFAs.