
Automata Theory :: Minimal DFAs

Jörg Endrullis

Vrije Universiteit Amsterdam

Minimal DFAs (Hopcroft, 1971)

Goal
Given a DFA M = (Q, Σ, δ, q0,F).

Construct the (unique) minimal DFA M̂ with L(M) = L(M̂).

(Here minimal is with respect to the number of states.)

Construction
Step 1: Remove all unreachable states from M.

Step 2: Partition Q in indistinguishable states.

Step 3: Read off the minimal DFA.

Step 1: Remove all unreachable states from M.

Remove all states q ∈ Q for which there is no path from q0 to q.

Minimal DFAs (Hopcroft, 1971)

Goal
Given a DFA M = (Q, Σ, δ, q0,F).

Construct the (unique) minimal DFA M̂ with L(M) = L(M̂).

(Here minimal is with respect to the number of states.)

Construction
Step 1: Remove all unreachable states from M.

Step 2: Partition Q in indistinguishable states.

Step 3: Read off the minimal DFA.

Step 1: Remove all unreachable states from M.

Remove all states q ∈ Q for which there is no path from q0 to q.

Minimal DFAs (Hopcroft, 1971)

Goal
Given a DFA M = (Q, Σ, δ, q0,F).

Construct the (unique) minimal DFA M̂ with L(M) = L(M̂).

(Here minimal is with respect to the number of states.)

Construction
Step 1: Remove all unreachable states from M.

Step 2: Partition Q in indistinguishable states.

Step 3: Read off the minimal DFA.

Step 1: Remove all unreachable states from M.

Remove all states q ∈ Q for which there is no path from q0 to q.

Minimal DFAs (2)

States q1,q2 ∈ Q are distinguishable if there exists w ∈ Σ∗ s.t.

q1
w−→−→ q ′1 ∈ F q2

w−→−→ q ′2 6∈ F ,

or vice versa.

Step 2: Partition Q in indistinguishable states.

We construct the partitioning stepwise:

Initial partitioning is {Q \ F , F }.

If there are partitions R and S such that

δ(q,a) ∈ S and δ(q ′,a) 6∈ S,

for some a ∈ Σ and q,q ′ ∈ R, then we split R in

{q ∈ R | δ(q,a) ∈ S } { q ∈ R | δ(q,a) 6∈ S }

We keep splitting until no more split is possible.

Minimal DFAs (2)

States q1,q2 ∈ Q are distinguishable if there exists w ∈ Σ∗ s.t.

q1
w−→−→ q ′1 ∈ F q2

w−→−→ q ′2 6∈ F ,

or vice versa.

Step 2: Partition Q in indistinguishable states.

We construct the partitioning stepwise:

Initial partitioning is {Q \ F , F }.

If there are partitions R and S such that

δ(q,a) ∈ S and δ(q ′,a) 6∈ S,

for some a ∈ Σ and q,q ′ ∈ R, then we split R in

{q ∈ R | δ(q,a) ∈ S } { q ∈ R | δ(q,a) 6∈ S }

We keep splitting until no more split is possible.

Minimal DFAs (2)

States q1,q2 ∈ Q are distinguishable if there exists w ∈ Σ∗ s.t.

q1
w−→−→ q ′1 ∈ F q2

w−→−→ q ′2 6∈ F ,

or vice versa.

Step 2: Partition Q in indistinguishable states.

We construct the partitioning stepwise:

Initial partitioning is {Q \ F , F }.

If there are partitions R and S such that

δ(q,a) ∈ S and δ(q ′,a) 6∈ S,

for some a ∈ Σ and q,q ′ ∈ R, then we split R in

{q ∈ R | δ(q,a) ∈ S } { q ∈ R | δ(q,a) 6∈ S }

We keep splitting until no more split is possible.

Minimal DFAs (2)

States q1,q2 ∈ Q are distinguishable if there exists w ∈ Σ∗ s.t.

q1
w−→−→ q ′1 ∈ F q2

w−→−→ q ′2 6∈ F ,

or vice versa.

Step 2: Partition Q in indistinguishable states.

We construct the partitioning stepwise:

Initial partitioning is {Q \ F , F }.

If there are partitions R and S such that

δ(q,a) ∈ S and δ(q ′,a) 6∈ S,

for some a ∈ Σ and q,q ′ ∈ R, then we split R in

{q ∈ R | δ(q,a) ∈ S } { q ∈ R | δ(q,a) 6∈ S }

We keep splitting until no more split is possible.

Minimal DFAs (2)

States q1,q2 ∈ Q are distinguishable if there exists w ∈ Σ∗ s.t.

q1
w−→−→ q ′1 ∈ F q2

w−→−→ q ′2 6∈ F ,

or vice versa.

Step 2: Partition Q in indistinguishable states.

We construct the partitioning stepwise:

Initial partitioning is {Q \ F , F }.

If there are partitions R and S such that

δ(q,a) ∈ S and δ(q ′,a) 6∈ S,

for some a ∈ Σ and q,q ′ ∈ R, then we split R in

{q ∈ R | δ(q,a) ∈ S } { q ∈ R | δ(q,a) 6∈ S }

We keep splitting until no more split is possible.

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).

Minimal DFAs (3)

Step 3: Read off the minimal DFA.

Let Q1, . . . ,Qn be the final partition of Q.

These are the states of the minimal DFA M̂.

The transitions (arrows) of M̂ are:

Qi
a→ Qj ⇐⇒ q a→ q ′ for some q ∈ Qi , q ′ ∈ Qj

The starting state is the set that contains q0.

The final states are the subsets of F .

Worst-case time complexity: O(|Σ|·|Q|2), since
There are maximal |Q|− 1 splits.
Every split costs maximal O(|Σ|·|Q|).

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).

2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.

New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.

New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

1. All states are reachable (nothing to remove).
2. Initial partitioning: {Q \ F ,F } = { {q0,q1,q2,q3 }, {q4 } }

Splitting R = {q0,q1,q2,q3 } with S = {q4 } and letter b ∈ Σ.
New partitioning: { {q0 }, {q1,q2,q3 }, {q4 } }.

Splitting R = {q1,q2,q3 } with S = {q0 } and letter a ∈ Σ.
New partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

Nothing more to split!

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

2. Final partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.

3. Reading off the minimal DFA:

{q0} {q4}

{q1,q2}

{q3}

a

b a

b

a

b

a

b

Exercise: DFA Minimisation

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

2. Final partitioning: { {q0 }, {q1,q2 }, {q3 }, {q4 } }.
3. Reading off the minimal DFA:

{q0} {q4}

{q1,q2}

{q3}

a

b a

b

a

b

a

b

Minimising of NFAs

Minimising of NFAs is very difficult.

Example
a

a
a a a

b
c

b c

a

b c

a

Theorem
Minimising of NFAs is PSpace-complete.

The definition of PSpace-complete follows later.

Minimising of NFAs

Minimising of NFAs is very difficult.

Example
a

a
a a a

b
c

b c

a

b c

a

Theorem
Minimising of NFAs is PSpace-complete.

The definition of PSpace-complete follows later.

Lexical Analysis

Lexical Analysis

Lexical analysis converts a sequence of characters into a
sequence of tokens.

Programs that do lexical analysis are lexers or tokenizers.

For example the expression

sum = 15 + 2

could be converted to the sequence of tokens

token token category
sum identifier
= assignment
15 integer literal
+ operator
2 integer literal

Allows to write parsers on the more abstract level of tokens.

Lexical Analysis

Lexical analysis converts a sequence of characters into a
sequence of tokens.

Programs that do lexical analysis are lexers or tokenizers.

For example the expression

sum = 15 + 2

could be converted to the sequence of tokens

token token category
sum identifier
= assignment
15 integer literal
+ operator
2 integer literal

Allows to write parsers on the more abstract level of tokens.

Lexical Analysis

How to get from characters to tokens?

Regular expressions r1, . . . , rn express the pattern.

Every regular expression corresponds to a token.

Lexical analysis repeatedly searches the longest prefix of
the input that is matched by one of the regular expressions.
This prefix is transformed into a token.

For improved performance:
Regular expressions are translated minimal DFAs.

Parser/lexer generators like
JavaCC

LEX
generate the lexer automatically. Thereby regular expressions
or grammars are converted to minimal DFAs.

Lexical Analysis

How to get from characters to tokens?

Regular expressions r1, . . . , rn express the pattern.

Every regular expression corresponds to a token.

Lexical analysis repeatedly searches the longest prefix of
the input that is matched by one of the regular expressions.
This prefix is transformed into a token.

For improved performance:
Regular expressions are translated minimal DFAs.

Parser/lexer generators like
JavaCC

LEX
generate the lexer automatically. Thereby regular expressions
or grammars are converted to minimal DFAs.

Lexical Analysis

How to get from characters to tokens?

Regular expressions r1, . . . , rn express the pattern.

Every regular expression corresponds to a token.

Lexical analysis repeatedly searches the longest prefix of
the input that is matched by one of the regular expressions.
This prefix is transformed into a token.

For improved performance:
Regular expressions are translated minimal DFAs.

Parser/lexer generators like
JavaCC

LEX
generate the lexer automatically. Thereby regular expressions
or grammars are converted to minimal DFAs.

Lexical Analysis

How to get from characters to tokens?

Regular expressions r1, . . . , rn express the pattern.

Every regular expression corresponds to a token.

Lexical analysis repeatedly searches the longest prefix of
the input that is matched by one of the regular expressions.
This prefix is transformed into a token.

For improved performance:
Regular expressions are translated minimal DFAs.

Parser/lexer generators like
JavaCC

LEX
generate the lexer automatically. Thereby regular expressions
or grammars are converted to minimal DFAs.

Lexical Analysis

How to get from characters to tokens?

Regular expressions r1, . . . , rn express the pattern.

Every regular expression corresponds to a token.

Lexical analysis repeatedly searches the longest prefix of
the input that is matched by one of the regular expressions.
This prefix is transformed into a token.

For improved performance:
Regular expressions are translated minimal DFAs.

Parser/lexer generators like
JavaCC

LEX
generate the lexer automatically. Thereby regular expressions
or grammars are converted to minimal DFAs.

	Minimal DFAs
	Lexical Analysis

