\begin{frame}{Minimal DFAs (3)}
\begin{block}{}
\emph{Step 3:} Read off the minimal DFA.
\pause\medskip
Let $Q_1,\ldots,Q_n$ be the final partition of $Q$.
\pause\medskip
These are the \alert{states} of the minimal DFA $\widehat M$.
\pause\medskip
The \alert{transitions} (arrows) of $\widehat M$ are:
\begin{talign}
Q_i \stackrel{a}{\to} Q_j \quad\iff\quad q \stackrel{a}{\to} q' \mbox{ for some $q \in Q_i$, $q' \in Q_j$} % \delta(q,a) \in Q_j \mbox{ for some } q \in Q_i
\end{talign}
\pause
The \alert{starting state} is the set that contains $q_0$.
\pause\medskip
The \alert{final states} are the subsets of $F$.
\end{block}
\pause\medskip
\begin{goal}{}
\structure{Worst-case time complexity}: $O(|\Sigma|{\cdot}|Q|^2)$, since
\begin{itemize}\setlength{\itemsep}{0pt}
\item There are maximal $|Q|-1$ splits.
\item Every split costs maximal $O(|\Sigma|{\cdot}|Q|)$.
\end{itemize}
\end{goal}
\end{frame}