\begin{frame}{Minimal DFAs (2)}
\begin{goal}{}
States $q_1,q_2 \in Q$ are \emph{distinguishable} if there exists $w \in \Sigma^*$ s.t.
\begin{talign}
q_1 \apath{w} q_1' \in F &&
q_2 \apath{w} q_2' \not\in F\;,
\end{talign}
or vice versa.
\end{goal}
\pause
\begin{block}{}
\emph{Step 2:} Partition $Q$ in indistinguishable states.
\medskip
We construct the partitioning stepwise:
\begin{itemize}
\pause\smallskip
\item Initial partitioning is $\{\, Q\setminus F,\,F\,\}$.
\pause
\item If there are partitions $R$ and $S$ such that
\begin{talign}
\delta(q,a)\in S &&\text{and}&& \delta(q',a)\not\in S,
\end{talign}
for some $a \in \Sigma$ and $q,q' \in R$, then we split $R$ in
\begin{talign}
\{\, q \in R \mid \delta(q,a)\in S \,\} && \{\,q \in R \mid \delta(q,a) \not\in S\,\}
\end{talign}
\end{itemize}
\pause
We keep splitting until no more split is possible.
\end{block}
\end{frame}