Automata Theory :: Regular Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Alternative Descriptions of Regular Languages

Recall that:

The following statements are equivalent:

- The language *L* is regular.
- There is a DFA M with L(M) = L.
- There is an NFA M with L(M) = L.
- There is a right linear grammar G with L(G) = L.
- There is a left linear grammar G with L(G) = L.
- There is a regular expression r with L(r) = L.

Elementary Properties of Regular Languages

Elementary Properties of Regular Languages

Theorem

If L_1 , L_2 , L are regular languages, then also

$$L_1 \cup L_2$$
 $L_1 \cap L_2$ $L_1 L_2$ \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

- $L_1 \cup L_2 = \frac{L(r_1 + r_2)}{L(r_1 + r_2)}$ is regular.
- $L_1L_2 = L(r_1 \cdot r_2)$ is regular.
- $L^* = L(r^*)$ is regular.
- L is accepted by some DFA $(Q, \Sigma, \delta, q_0, F)$. $\overline{L} = L((Q, \Sigma, \delta, q_0, Q \setminus F))$ is regular.
- $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ is regular.
- $L_1 \setminus L_2 = \underline{L_1} \cap \overline{L_2}$ is regular.
- For L^R , take an NFA that accepts L. Reverse all arrows. Swap final and starting states. The result accepts L^R .

Decidable Properties of Regular Languages

Decidability of Emptyness

Roughly speaking, a property is **decidable** if there is an **algorithm/program** that can tell whether the property holds.

Convention

If we say that a **property of regular languages is decidable**, we implicitly assume that the language is **given as a DFA** (or a description that can be translated into a DFA by an algorithm).

Theorem

It is decidable whether a regular language L is empty.

Proof.

- Construct a DFA (or NFA) M with L(M) = L.
- Check if *M* has a path from starting state to a final state.
- If **yes**, then $L \neq \emptyset$. If **no**, then $L = \emptyset$.

Decidability of Membership

Theorem

It is decidable if a word u is member of a regular language L.

Proof.

- Represent L in the form of a DFA M.
- Check if u is accepted by M.

Practical difficulty: state-space explosion

The conversion to DFA might require an exponential number of states. (E.g. when *L* is given as NFA or regular expression.)

Solution

On-the-fly generation of DFA prevents state-space explosion. We only generate those states visited when reading u.

Decidability of Subsets

Theorem

It is decidable for regular languages L_1 and L_2 if $L_1 \subseteq L_2$.

Proof.

We have

$$L_1 \subseteq L_2 \iff L_1 \setminus L_2 = \emptyset$$

The language $L_1 \setminus L_2$ is regular.

Finally, emptyness is decidable.

Decidability of Equivalence

Theorem

It is decidable if two regular languages L_1 and L_2 are equal.

Proof.

We have

$$L_1 = L_2 \quad \iff \quad (L_1 \subseteq L_2) \land (L_2 \subseteq L_1)$$

Both problems on the right are decidable.