Automata Theory :: Regular Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Alternative Descriptions of Regular Languages

Recall that:

The following statements are equivalent:

- The language *L* is regular.
- There is a DFA *M* with L(M) = L.
- There is an NFA *M* with L(M) = L.
- There is a right linear grammar *G* with L(G) = L.
- There is a left linear grammar G with L(G) = L.
- There is a regular expression *r* with L(r) = L.

Theorem

If L_1 , L_2 , L are regular languages, then also

 $L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1 L_2 \qquad \overline{L} \qquad L_1 \backslash L_2 \qquad L^* \qquad L^R$

Theorem

If L_1 , L_2 , L are regular languages, then also

 $L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1 L_2 \qquad \overline{L} \qquad L_1 \setminus L_2 \qquad L^* \qquad L^R$

Proof.

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ L_1L_2 \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$. $L_1 \cup L_2 = L_1 \cup L_2$

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ L_1L_2 \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ L_1L_2 \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

•
$$L_1 \cup L_2 = L(r_1 + r_2)$$
 is regular.
• $L_1L_2 =$

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ L_1L_2 \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

- $L_1 \cup L_2 = L(r_1 + r_2)$ is regular.
- $L_1L_2 = L(r_1 \cdot r_2)$ is regular.

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ L_1L_2 \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

•
$$L_1 \cup L_2 = L(r_1 + r_2)$$
 is regular
• $L_1L_2 = L(r_1 \cdot r_2)$ is regular.
• $L^* =$

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ L_1L_2 \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

•
$$L_1L_2 = L(r_1 \cdot r_2)$$
 is regular.

•
$$L^* = L(r^*)$$
 is regular.

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 L_2$ \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

•
$$L_1L_2 = L(r_1 \cdot r_2)$$
 is regular.

- $L^* = L(r^*)$ is regular.
- *L* is accepted by some DFA $(Q, \Sigma, \delta, q_0, F)$. $\overline{L} = L((Q, \Sigma, \delta, q_0, Q \setminus F))$ is regular.

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 L_2$ \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

•
$$L_1L_2 = L(r_1 \cdot r_2)$$
 is regular.

- $L^* = L(r^*)$ is regular.
- *L* is accepted by some DFA $(Q, \Sigma, \delta, q_0, F)$. $\overline{L} = L((Q, \Sigma, \delta, q_0, Q \setminus F))$ is regular.
- $\blacksquare L_1 \cap L_2$

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 L_2$ \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

•
$$L_1L_2 = L(r_1 \cdot r_2)$$
 is regular.

- $L^* = L(r^*)$ is regular.
- *L* is accepted by some DFA $(Q, \Sigma, \delta, q_0, F)$. $\overline{L} = L((Q, \Sigma, \delta, q_0, Q \setminus F))$ is regular.
- $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ is regular.

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 L_2$ \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

■ $L_1 \cup L_2 = \frac{L(r_1 + r_2)}{r_1 + r_2}$ is regular.

•
$$L_1L_2 = L(r_1 \cdot r_2)$$
 is regular.

- $L^* = L(r^*)$ is regular.
- *L* is accepted by some DFA $(Q, \Sigma, \delta, q_0, F)$. $\overline{L} = L((Q, \Sigma, \delta, q_0, Q \setminus F))$ is regular.
- $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ is regular.
- $\blacksquare L_1 \backslash L_2$

Theorem

If L_1 , L_2 , L are regular languages, then also $L_1 \cup L_2$ $L_1 \cap L_2$ $L_1 L_2$ \overline{L} $L_1 \setminus L_2$ L^* L^R

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

■ $L_1 \cup L_2 = \frac{L(r_1 + r_2)}{r_1 + r_2}$ is regular.

•
$$L_1L_2 = L(r_1 \cdot r_2)$$
 is regular.

•
$$L^* = L(r^*)$$
 is regular.

- *L* is accepted by some DFA $(Q, \Sigma, \delta, q_0, F)$. $\overline{L} = L((Q, \Sigma, \delta, q_0, Q \setminus F))$ is regular.
- $L_1 \cap L_2 = \overline{L_1} \cup \overline{L_2}$ is regular.
- $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ is regular.

Theorem

If L_1 , L_2 , L are regular languages, then also

 $L_1 \cup L_2 \qquad L_1 \cap L_2 \qquad L_1 L_2 \qquad \overline{L} \qquad L_1 \setminus L_2 \qquad L^* \qquad L^R$

Proof.

Let r_1, r_2, r be regular expr. with $L(r_1) = L_1, L(r_2) = L_2, L(r) = L$.

■ $L_1 \cup L_2 = \frac{L(r_1 + r_2)}{r_1 + r_2}$ is regular.

•
$$L_1L_2 = L(r_1 \cdot r_2)$$
 is regular.

•
$$L^* = L(r^*)$$
 is regular.

- *L* is accepted by some DFA $(Q, \Sigma, \delta, q_0, F)$. $\overline{L} = L((Q, \Sigma, \delta, q_0, Q \setminus F))$ is regular.
- $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$ is regular.
- $L_1 \setminus L_2 = L_1 \cap \overline{L_2}$ is regular.
- For L^R, take an NFA that accepts L. Reverse all arrows. Swap final and starting states. The result accepts L^R.

Decidable Properties of Regular Languages

Roughly speaking, a property is **decidable** if there is an **algorithm/program** that can tell whether the property holds.

Roughly speaking, a property is **decidable** if there is an **algorithm/program** that can tell whether the property holds.

Convention

If we say that a **property of regular languages is decidable**, we implicitly assume that the language is **given as a DFA** (or a description that can be translated into a DFA by an algorithm).

Roughly speaking, a property is **decidable** if there is an **algorithm/program** that can tell whether the property holds.

Convention

If we say that a **property of regular languages is decidable**, we implicitly assume that the language is **given as a DFA** (or a description that can be translated into a DFA by an algorithm).

Theorem

It is decidable whether a regular language L is empty.

Roughly speaking, a property is **decidable** if there is an **algorithm/program** that can tell whether the property holds.

Convention

If we say that a **property of regular languages is decidable**, we implicitly assume that the language is **given as a DFA** (or a description that can be translated into a DFA by an algorithm).

Theorem

It is decidable whether a regular language L is empty.

Proof.

- Construct a DFA (or NFA) M with L(M) = L.
- Check if *M* has a path from starting state to a final state.
- If yes, then $L \neq \emptyset$. If no, then $L = \emptyset$.

Theorem

It is decidable if a word *u* is member of a regular language *L*.

Theorem

It is decidable if a word *u* is member of a regular language *L*.

Proof.

- Represent *L* in the form of a DFA *M*.
- Check if *u* is accepted by *M*.

Theorem

It is decidable if a word *u* is member of a regular language *L*.

Proof.

- Represent *L* in the form of a DFA *M*.
- Check if *u* is accepted by *M*.

Practical difficulty: state-space explosion

The conversion to DFA might require an exponential number of states. (E.g. when L is given as NFA or regular expression.)

Theorem

It is decidable if a word *u* is member of a regular language *L*.

Proof.

- Represent *L* in the form of a DFA *M*.
- Check if *u* is accepted by *M*.

Practical difficulty: state-space explosion

The conversion to DFA might require an exponential number of states. (E.g. when L is given as NFA or regular expression.)

Solution

On-the-fly generation of DFA prevents state-space explosion. We only generate those states visited when reading u.

It is decidable for regular languages L_1 and L_2 if $L_1 \subseteq L_2$.

It is decidable for regular languages L_1 and L_2 if $L_1 \subseteq L_2$.

Proof.

We have

$$L_1 \subseteq L_2 \quad \iff$$

It is decidable for regular languages L_1 and L_2 if $L_1 \subseteq L_2$.

Proof.

We have

$$L_1 \subseteq L_2 \quad \iff \quad L_1 \setminus L_2 = \emptyset$$

It is decidable for regular languages L_1 and L_2 if $L_1 \subseteq L_2$.

Proof.

We have

$$L_1 \subseteq L_2 \quad \iff \quad L_1 \setminus L_2 = \emptyset$$

The language $L_1 \setminus L_2$ is regular.

It is decidable for regular languages L_1 and L_2 if $L_1 \subseteq L_2$.

Proof.

We have

$$L_1 \subseteq L_2 \quad \iff \quad L_1 \setminus L_2 = \emptyset$$

The language $L_1 \setminus L_2$ is regular.

Finally, emptyness is decidable.

It is decidable if two regular languages L_1 and L_2 are equal.

It is decidable if two regular languages L_1 and L_2 are equal.

Proof.

We have

$$L_1 = L_2 \quad \iff$$

It is decidable if two regular languages L_1 and L_2 are equal.

Proof.

We have

$$L_1 = L_2 \quad \iff \quad (L_1 \subseteq L_2) \land (L_2 \subseteq L_1)$$

It is decidable if two regular languages L_1 and L_2 are equal.

Proof.

We have

$$L_1 = L_2 \quad \iff \quad (L_1 \subseteq L_2) \land (L_2 \subseteq L_1)$$

Both problems on the right are decidable.