
Automata Theory :: Regular Languages

Jörg Endrullis

Vrije Universiteit Amsterdam



Alternative Descriptions of Regular Languages

Recall that:

The following statements are equivalent:

The language L is regular.

There is a DFA M with L(M) = L.

There is an NFA M with L(M) = L.

There is a right linear grammar G with L(G) = L.

There is a left linear grammar G with L(G) = L.

There is a regular expression r with L(r) = L.



Elementary Properties of Regular Languages



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 =

L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.

L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 =

L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.

L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ =

L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.

L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2

= L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.

L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2

= L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.

For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Elementary Properties of Regular Languages

Theorem
If L1, L2, L are regular languages, then also

L1 ∪ L2 L1 ∩ L2 L1L2 L L1\L2 L∗ LR

Proof.
Let r1, r2, r be regular expr. with L(r1) = L1, L(r2) = L2, L(r) = L.

L1 ∪ L2 = L(r1 + r2) is regular.
L1L2 = L(r1 · r2) is regular.
L∗ = L(r∗) is regular.
L is accepted by some DFA (Q, Σ, δ, q0,F ).
L = L((Q, Σ, δ, q0,Q\F )) is regular.

L1 ∩ L2 = L1 ∪ L2 is regular.
L1\L2 = L1 ∩ L2 is regular.
For LR, take an NFA that accepts L. Reverse all arrows.
Swap final and starting states. The result accepts LR.



Decidable Properties of Regular Languages



Decidability of Emptyness

Roughly speaking, a property is decidable if there is an
algorithm/program that can tell whether the property holds.

Convention
If we say that a property of regular languages is decidable,
we implicitly assume that the language is given as a DFA (or a
description that can be translated into a DFA by an algorithm).

Theorem
It is decidable whether a regular language L is empty.

Proof.

Construct a DFA (or NFA) M with L(M) = L.
Check if M has a path from starting state to a final state.
If yes, then L 6= ∅. If no, then L = ∅.



Decidability of Emptyness

Roughly speaking, a property is decidable if there is an
algorithm/program that can tell whether the property holds.

Convention
If we say that a property of regular languages is decidable,
we implicitly assume that the language is given as a DFA (or a
description that can be translated into a DFA by an algorithm).

Theorem
It is decidable whether a regular language L is empty.

Proof.

Construct a DFA (or NFA) M with L(M) = L.
Check if M has a path from starting state to a final state.
If yes, then L 6= ∅. If no, then L = ∅.



Decidability of Emptyness

Roughly speaking, a property is decidable if there is an
algorithm/program that can tell whether the property holds.

Convention
If we say that a property of regular languages is decidable,
we implicitly assume that the language is given as a DFA (or a
description that can be translated into a DFA by an algorithm).

Theorem
It is decidable whether a regular language L is empty.

Proof.

Construct a DFA (or NFA) M with L(M) = L.
Check if M has a path from starting state to a final state.
If yes, then L 6= ∅. If no, then L = ∅.



Decidability of Emptyness

Roughly speaking, a property is decidable if there is an
algorithm/program that can tell whether the property holds.

Convention
If we say that a property of regular languages is decidable,
we implicitly assume that the language is given as a DFA (or a
description that can be translated into a DFA by an algorithm).

Theorem
It is decidable whether a regular language L is empty.

Proof.

Construct a DFA (or NFA) M with L(M) = L.
Check if M has a path from starting state to a final state.
If yes, then L 6= ∅. If no, then L = ∅.



Decidability of Membership

Theorem
It is decidable if a word u is member of a regular language L.

Proof.

Represent L in the form of a DFA M.

Check if u is accepted by M.

Practical difficulty: state-space explosion
The conversion to DFA might require an exponential number of
states. (E.g. when L is given as NFA or regular expression.)

Solution
On-the-fly generation of DFA prevents state-space explosion.
We only generate those states visited when reading u.



Decidability of Membership

Theorem
It is decidable if a word u is member of a regular language L.

Proof.

Represent L in the form of a DFA M.

Check if u is accepted by M.

Practical difficulty: state-space explosion
The conversion to DFA might require an exponential number of
states. (E.g. when L is given as NFA or regular expression.)

Solution
On-the-fly generation of DFA prevents state-space explosion.
We only generate those states visited when reading u.



Decidability of Membership

Theorem
It is decidable if a word u is member of a regular language L.

Proof.

Represent L in the form of a DFA M.

Check if u is accepted by M.

Practical difficulty: state-space explosion
The conversion to DFA might require an exponential number of
states. (E.g. when L is given as NFA or regular expression.)

Solution
On-the-fly generation of DFA prevents state-space explosion.
We only generate those states visited when reading u.



Decidability of Membership

Theorem
It is decidable if a word u is member of a regular language L.

Proof.

Represent L in the form of a DFA M.

Check if u is accepted by M.

Practical difficulty: state-space explosion
The conversion to DFA might require an exponential number of
states. (E.g. when L is given as NFA or regular expression.)

Solution
On-the-fly generation of DFA prevents state-space explosion.
We only generate those states visited when reading u.



Decidability of Subsets

Theorem
It is decidable for regular languages L1 and L2 if L1 ⊆ L2.

Proof.
We have

L1 ⊆ L2 ⇐⇒

L1 \ L2 = ∅

The language L1 \ L2 is regular.

Finally, emptyness is decidable.



Decidability of Subsets

Theorem
It is decidable for regular languages L1 and L2 if L1 ⊆ L2.

Proof.
We have

L1 ⊆ L2 ⇐⇒

L1 \ L2 = ∅

The language L1 \ L2 is regular.

Finally, emptyness is decidable.



Decidability of Subsets

Theorem
It is decidable for regular languages L1 and L2 if L1 ⊆ L2.

Proof.
We have

L1 ⊆ L2 ⇐⇒ L1 \ L2 = ∅

The language L1 \ L2 is regular.

Finally, emptyness is decidable.



Decidability of Subsets

Theorem
It is decidable for regular languages L1 and L2 if L1 ⊆ L2.

Proof.
We have

L1 ⊆ L2 ⇐⇒ L1 \ L2 = ∅

The language L1 \ L2 is regular.

Finally, emptyness is decidable.



Decidability of Subsets

Theorem
It is decidable for regular languages L1 and L2 if L1 ⊆ L2.

Proof.
We have

L1 ⊆ L2 ⇐⇒ L1 \ L2 = ∅

The language L1 \ L2 is regular.

Finally, emptyness is decidable.



Decidability of Equivalence

Theorem
It is decidable if two regular languages L1 and L2 are equal.

Proof.
We have

L1 = L2 ⇐⇒

(L1 ⊆ L2)∧ (L2 ⊆ L1)

Both problems on the right are decidable.



Decidability of Equivalence

Theorem
It is decidable if two regular languages L1 and L2 are equal.

Proof.
We have

L1 = L2 ⇐⇒

(L1 ⊆ L2)∧ (L2 ⊆ L1)

Both problems on the right are decidable.



Decidability of Equivalence

Theorem
It is decidable if two regular languages L1 and L2 are equal.

Proof.
We have

L1 = L2 ⇐⇒ (L1 ⊆ L2)∧ (L2 ⊆ L1)

Both problems on the right are decidable.



Decidability of Equivalence

Theorem
It is decidable if two regular languages L1 and L2 are equal.

Proof.
We have

L1 = L2 ⇐⇒ (L1 ⊆ L2)∧ (L2 ⊆ L1)

Both problems on the right are decidable.


	Properties of Regular Languges
	Elementary Properties of Regular Languages


