% \begin{frame}{$L^R$ is Regular}
% \begin{block}{Construction 3}
% Reverse a regular expression (defined by recursion):
% \begin{talign}
% \begin{array}{lcl}
% {\it rev}(\emptyset) &=& \alert{\emptyset} \\
% {\it rev}(\lambda) &=& \alert{\lambda} \\
% {\it rev}(a) &=& \alert{a} \hspace*{3cm} (a \in \Sigma) \\
% {\it rev}(r_1 + r_2) &=& \alert{{\it rev}(r_1) + {\it rev}(r_2)} \\
% {\it rev}(r_1 \cdot r_2) &=& \alert{{\it rev}(r_2) \cdot {\it rev}(r_1)} \\
% {\it rev}(r^*) &=& \alert{{\it rev}(r)^*}
% \end{array}
% \end{talign}
% Using induction, it can be shown that
% \begin{talign}
% \alert{L({\it rev}(r)) ~=~ L(r)^R}
% \end{talign}
% \end{block}
% \end{frame}
\themex{Decidable Properties of Regular Languages}