Automata Theory :: Regular Expressions

Jörg Endrullis

Vrije Universiteit Amsterdam

Regular Expressions

We define the regular expressions over an alphabet Σ :

- \varnothing is a regular expression
- λ is a regular expression
- a is a regular expression for every $a \in \Sigma$
- $r_{1}+r_{2}$ is a regular expression for all regular expr. r_{1} and r_{2}
- $r_{1} \cdot r_{2}$ is a regular expression for all regular expr. r_{1} and r_{2}

■ r^{*} is a regular expression for all regular expressions r
A regular expression is syntax, describing a language.
Every regular expression r defines a language $L(r)$:

$$
\begin{aligned}
L(\varnothing) & =\varnothing & L\left(r_{1}+r_{2}\right) & =L\left(r_{1}\right) \cup L\left(r_{2}\right) \\
L(\lambda) & =\{\lambda\} & L\left(r_{1} \cdot r_{2}\right) & =L\left(r_{1}\right) L\left(r_{2}\right) \\
L(a) & =\{a\} \text { for } a \in \Sigma & L\left(r^{*}\right) & =L(r)^{*}
\end{aligned}
$$

Example

Example
 $\left.L\left((a+b) \cdot c^{*}\right)=(\{a\} \cup\{b\})\{c\}^{*}=\{a, b\} c\right\}^{*}$

Regular expressions are used to search and manipulate text.
For example:

- grep in Linux
- script languages such as Perl

Every major programming language has regular expressions.

Exercise

Find a regular expression r over $\Sigma=\{a, b\}$ such that $L(r)$ consists of all words that contain the pattern bab:

$$
(a+b)^{*} \cdot b \cdot a \cdot b \cdot(a+b)^{*}=(a+b)^{*} b a b(a+b)^{*}
$$

Regular Expressions \Longleftrightarrow Regular Languages

Theorem

A language L is regular
\Longleftrightarrow there is a regular expression r with $L(r)=L$.

Proof.

We need to prove two directions:

- (\Leftarrow) Translate regular expressions into NFAs.
- (\Rightarrow) Translate NFAs into regular expressions.

(\Leftarrow) From Regular Expressions to NFAs

Construction (\Leftarrow)

For every regular expression r, we build an NFA M such that

- $L(M)=L(r)$,
- M has precisely one final and one (different) starting state We construct M by induction (recursion) on r.

Exercise

Understanding the start case

Note that:
$\square\left(\left(a^{*}\right) \cdot b\right)^{*}$ shows that the new starting state is needed

- $\left(a \cdot\left(b^{*}\right)\right)^{*}$ shows that the new final state is needed

What goes wrong without introducing the new start/final state?

(\Rightarrow) From NFAs to Regular Expressions (1)

Construction (\Rightarrow)

For every NFA M, we construct a regular expression r with

$$
L(r)=L(M)
$$

Step 1:

We transform M such that there is

- precisely one initial state
- precisely one final state

(\Rightarrow) From NFAs to Regular Expressions (2)

Step 2:

We remove all double arrows.
We use transition graphs with regular expressions as labels.
If there are 2 arrows from a state q_{1} to q_{2} with labels r_{1} and r_{2} replace them by one arrow with label $r_{1}+r_{2}$:

Note that q_{1} can be equal to q_{2}. Then the arrows are loops!
We remove all double arrows before continuing with Step 3.

(\Rightarrow) From NFAs to Regular Expressions (3)

Step 3: Pick one state q that is neither a starting nor a final state (if it exists). We remove q as follows.

For all states q_{1} and q_{2} and arrows $q_{1} \xrightarrow{r_{1}} q$ and $q \xrightarrow{r_{2}} q_{2}$, we add an arrow from q_{1} to q_{2} as follows:
for the case that there is an arrow $q \xrightarrow{r} q$, and otherwise:

Note that q_{1} can be equal to q_{2}.
Afterwards adding all these transitions we remove q.
We repeat Step 2 and Step 3 until there is nothing to be done.

(\Rightarrow) From NFAs to Regular Expressions (4)

Step 4:

If $F \neq\left\{q_{0}\right\}$, then the transition graph is finally of the form:

If an arrow r_{i} with $1 \leq i \leq 4$ does not exist, let $r_{i}=\varnothing$.
Then the regular expression is:

$$
L\left(r_{1}^{*} \cdot r_{2} \cdot\left(r_{4}+r_{3} \cdot r_{1}^{*} \cdot r_{2}\right)^{*}\right)=L(M)
$$

Question

What is the form of the transition graph and regular expression for the case that $F=\left\{q_{0}\right\}$?

Exercise

Find a regular expression r such that

$$
L(r)=\left\{w \in\{a, b\}^{*} \mid n_{a}(w) \text { even and } n_{b}(w) \text { is odd }\right\}
$$

where

- $n_{a}(w)$ is the number of a's in w, and
- $n_{b}(w)$ is the number of b 's in w.

Find a regular expression r over $\{a, b\}$ such that $L(r)$ consists of all words that do not contain the pattern bab.

