Automata Theory :: Regular Expressions

Jörg Endrullis

Vrije Universiteit Amsterdam

Regular Expressions

We define the **regular expressions** over an alphabet Σ :

- Ø is a regular expression
- λ is a regular expression
- **a** is a regular expression for every $a \in \Sigma$
- ${\color{red} \bullet}$ ${\color{red} r_1} + {\color{red} r_2}$ is a regular expression for all regular expr. ${\color{red} r_1}$ and ${\color{red} r_2}$
- ${f r_1} \cdot {f r_2}$ is a regular expression for all regular expr. ${\it r_1}$ and ${\it r_2}$
- $ightharpoonup r^*$ is a regular expression for all regular expressions r

A regular expression is syntax, describing a language.

Every **regular expression** r defines a **language** L(r):

$$L(\varnothing) = \varnothing$$
 $L(r_1 + r_2) = L(r_1) \cup L(r_2)$
 $L(\lambda) = \{\lambda\}$ $L(r_1 \cdot r_2) = L(r_1)L(r_2)$
 $L(a) = \{a\}$ for $a \in \Sigma$ $L(r^*) = L(r)^*$

Example

Example

$$L((a+b)\cdot c^*) = (\{a\} \cup \{b\})\{c\}^* = \{a,b\}\{c\}^*$$

Regular expressions are used to search and manipulate text.

For example:

- grep in Linux
- script languages such as Perl

$$-Z_{a-z_{0-9}}$$
) ($[0-9]$ + $[0-9]$ + $[0-9]$ + $[0-9]$ + $[0-2]$

Every major programming language has regular expressions.

Exercise

Find a regular expression r over $\Sigma = \{a, b\}$ such that L(r) consists of all words that contain the pattern bab:

$$(a+b)^* \cdot b \cdot a \cdot b \cdot (a+b)^* = (a+b)^* \ bab \ (a+b)^*$$

Regular Expressions \iff Regular Languages

Theorem

A language *L* is **regular**

 \iff there is a **regular expression** r with L(r) = L.

Proof.

We need to prove two directions:

- (⇐) Translate regular expressions into NFAs.
- \blacksquare (\Rightarrow) Translate NFAs into regular expressions.

(⇐) From Regular Expressions to NFAs

Construction (⇐)

For every regular expression r, we build an NFA M such that

- $\blacksquare L(M) = L(r),$
- *M* has precisely one final and one (different) starting state We construct *M* by induction (recursion) on *r*.

Exercise

Understanding the start case

Note that:

- $((a^*) \cdot b)^*$ shows that the new starting state is needed
- $(a \cdot (b^*))^*$ shows that the new final state is needed

What goes wrong without introducing the new start/final state?

(\Rightarrow) From NFAs to Regular Expressions (1)

Construction (⇒)

For every NFA M, we construct a regular expression r with

$$L(r) = L(M)$$

Step 1:

We transform M such that there is

- precisely one initial state
- precisely one final state

(\Rightarrow) From NFAs to Regular Expressions (2)

Step 2:

We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q_1 to q_2 with labels r_1 and r_2 replace them by one arrow with label $r_1 + r_2$:

Note that q_1 can be equal to q_2 . Then the arrows are loops!

We remove all double arrows before continuing with Step 3.

(⇒) From NFAs to Regular Expressions (3)

Step 3: Pick one state q that is neither a starting nor a final state (if it exists). We remove q as follows.

For all states q_1 and q_2 and arrows $q_1 \xrightarrow{r_1} q$ and $q \xrightarrow{r_2} q_2$, we add an arrow from q_1 to q_2 as follows:

for the case that there is an arrow $q \stackrel{r}{\rightarrow} q$, and otherwise:

$$\underbrace{q_1} \xrightarrow{r_1} \underbrace{q} \xrightarrow{r_2} \underbrace{q_2} \quad \Rightarrow \quad \underbrace{q_1} \xrightarrow{r_1} \underbrace{q} \xrightarrow{r_2} \underbrace{q_2}$$

Note that q_1 can be equal to q_2 .

Afterwards adding all these transitions we remove q.

We repeat Step 2 and Step 3 until there is nothing to be done.

(⇒) From NFAs to Regular Expressions (4)

Step 4:

If $F \neq \{q_0\}$, then the transition graph is finally of the form:

If an arrow r_i with $1 \le i \le 4$ does not exist, let $r_i = \emptyset$.

Then the regular expression is:

$$L(r_1^* \cdot r_2 \cdot (r_4 + r_3 \cdot r_1^* \cdot r_2)^*) = L(M)$$

Question

What is the form of the transition graph and regular expression for the case that $F = \{q_0\}$?

Exercise

Find a regular expression r such that

$$L(r) = \{ w \in \{a, b\}^* \mid n_a(w) \text{ even and } n_b(w) \text{ is odd } \}$$

where

- $n_a(w)$ is the number of a's in w, and
- $n_b(w)$ is the number of *b*'s in *w*.

Find a regular expression r over $\{a, b\}$ such that L(r) consists of all words that do not contain the pattern bab.