
Automata Theory :: Regular Expressions

Jörg Endrullis

Vrije Universiteit Amsterdam



Regular Expressions

We define the regular expressions over an alphabet Σ:
∅ is a regular expression

λ is a regular expression

a is a regular expression for every a ∈ Σ

r1 + r2 is a regular expression for all regular expr. r1 and r2

r1 · r2 is a regular expression for all regular expr. r1 and r2

r∗ is a regular expression for all regular expressions r

A regular expression is syntax, describing a language.

Every regular expression r defines a language L(r):

L(∅) = ∅ L(r1 + r2) = L(r1) ∪ L(r2)

L(λ) = { λ } L(r1 · r2) = L(r1)L(r2)

L(a) = {a } for a ∈ Σ L(r∗) = L(r)∗



Regular Expressions

We define the regular expressions over an alphabet Σ:
∅ is a regular expression

λ is a regular expression

a is a regular expression for every a ∈ Σ

r1 + r2 is a regular expression for all regular expr. r1 and r2

r1 · r2 is a regular expression for all regular expr. r1 and r2

r∗ is a regular expression for all regular expressions r

A regular expression is syntax, describing a language.

Every regular expression r defines a language L(r):

L(∅) = ∅ L(r1 + r2) = L(r1) ∪ L(r2)

L(λ) = { λ } L(r1 · r2) = L(r1)L(r2)

L(a) = {a } for a ∈ Σ L(r∗) = L(r)∗



Example

Example
L((a + b) · c∗) = ({a } ∪ {b }){ c }∗ = {a,b }{ c }∗

Regular expressions are used to search and manipulate text.

For example:
grep in Linux

script languages such as Perl

Every major programming language has regular expressions.

Exercise
Find a regular expression r over Σ = {a,b } such that
L(r) consists of all words that contain the pattern bab:

(a + b)∗ · b · a · b · (a + b)∗

= (a + b)∗ bab (a + b)∗



Example

Example
L((a + b) · c∗) = ({a } ∪ {b }){ c }∗ = {a,b }{ c }∗

Regular expressions are used to search and manipulate text.

For example:
grep in Linux

script languages such as Perl

Every major programming language has regular expressions.

Exercise
Find a regular expression r over Σ = {a,b } such that
L(r) consists of all words that contain the pattern bab:

(a + b)∗ · b · a · b · (a + b)∗

= (a + b)∗ bab (a + b)∗



Example

Example
L((a + b) · c∗) = ({a } ∪ {b }){ c }∗ = {a,b }{ c }∗

Regular expressions are used to search and manipulate text.

For example:
grep in Linux

script languages such as Perl

Every major programming language has regular expressions.

Exercise
Find a regular expression r over Σ = {a,b } such that
L(r) consists of all words that contain the pattern bab:

(a + b)∗ · b · a · b · (a + b)∗

= (a + b)∗ bab (a + b)∗



Example

Example
L((a + b) · c∗) = ({a } ∪ {b }){ c }∗ = {a,b }{ c }∗

Regular expressions are used to search and manipulate text.

For example:
grep in Linux

script languages such as Perl

Every major programming language has regular expressions.

Exercise
Find a regular expression r over Σ = {a,b } such that
L(r) consists of all words that contain the pattern bab:

(a + b)∗ · b · a · b · (a + b)∗

= (a + b)∗ bab (a + b)∗



Example

Example
L((a + b) · c∗) = ({a } ∪ {b }){ c }∗ = {a,b }{ c }∗

Regular expressions are used to search and manipulate text.

For example:
grep in Linux

script languages such as Perl

Every major programming language has regular expressions.

Exercise
Find a regular expression r over Σ = {a,b } such that
L(r) consists of all words that contain the pattern bab:

(a + b)∗ · b · a · b · (a + b)∗ = (a + b)∗ bab (a + b)∗



Regular Expressions ⇐⇒ Regular Languages

Theorem
A language L is regular⇐⇒ there is a regular expression r with L(r) = L.

Proof.
We need to prove two directions:

(⇐) Translate regular expressions into NFAs.

(⇒) Translate NFAs into regular expressions.



Regular Expressions ⇐⇒ Regular Languages

Theorem
A language L is regular⇐⇒ there is a regular expression r with L(r) = L.

Proof.
We need to prove two directions:

(⇐) Translate regular expressions into NFAs.

(⇒) Translate NFAs into regular expressions.



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ

λ:

a

a:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λ

r1 · r2:

rλ λ

λ

λ

r∗:



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ

λ:

a

a:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λ

r1 · r2:

rλ λ

λ

λ

r∗:



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ

λ:

a

a:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λ

r1 · r2:

rλ λ

λ

λ

r∗:



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ
λ:

a

a:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λ

r1 · r2:

rλ λ

λ

λ

r∗:



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ
λ:

aa:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λ

r1 · r2:

rλ λ

λ

λ

r∗:



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ
λ:

aa:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λ

r1 · r2:

rλ λ

λ

λ

r∗:



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ
λ:

aa:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λr1 · r2:

rλ λ

λ

λ

r∗:



(⇐) From Regular Expressions to NFAs

Construction (⇐)
For every regular expression r , we build an NFA M such that

L(M) = L(r),
M has precisely one final and one (different) starting state

We construct M by induction (recursion) on r .

∅:

λ
λ:

aa:

r1

r2

λ

λ

λ

λ

r1 + r2:

r1 r2
λr1 · r2:

rλ λ

λ

λ

r∗:



Exercise

Understanding the start case

rλ λ

λ

λ

r∗:

Note that:
((a∗) · b)∗ shows that the new starting state is needed

(a · (b∗))∗ shows that the new final state is needed

What goes wrong without introducing the new start/final state?



(⇒) From NFAs to Regular Expressions (1)

Construction (⇒)
For every NFA M, we construct a regular expression r with

L(r) = L(M)

Step 1:
We transform M such that there is

precisely one initial state

precisely one final state



(⇒) From NFAs to Regular Expressions (1)

Construction (⇒)
For every NFA M, we construct a regular expression r with

L(r) = L(M)

Step 1:
We transform M such that there is

precisely one initial state

precisely one final state



(⇒) From NFAs to Regular Expressions (2)

Step 2:
We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q1 to q2 with labels r1 and r2
replace them by one arrow with label r1 + r2:

q1 q2

r1

r2

⇒ q1 q2
r1 + r2

Note that q1 can be equal to q2. Then the arrows are loops!

We remove all double arrows before continuing with Step 3.



(⇒) From NFAs to Regular Expressions (2)

Step 2:
We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q1 to q2 with labels r1 and r2
replace them by one arrow with label r1 + r2:

q1 q2

r1

r2

⇒ q1 q2
r1 + r2

Note that q1 can be equal to q2. Then the arrows are loops!

We remove all double arrows before continuing with Step 3.



(⇒) From NFAs to Regular Expressions (2)

Step 2:
We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q1 to q2 with labels r1 and r2
replace them by one arrow with label r1 + r2:

q1 q2

r1

r2

⇒ q1 q2
r1 + r2

Note that q1 can be equal to q2. Then the arrows are loops!

We remove all double arrows before continuing with Step 3.



(⇒) From NFAs to Regular Expressions (2)

Step 2:
We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q1 to q2 with labels r1 and r2
replace them by one arrow with label r1 + r2:

q1 q2

r1

r2

⇒ q1 q2
r1 + r2

Note that q1 can be equal to q2. Then the arrows are loops!

We remove all double arrows before continuing with Step 3.



(⇒) From NFAs to Regular Expressions (2)

Step 2:
We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q1 to q2 with labels r1 and r2
replace them by one arrow with label r1 + r2:

q1 q2

r1

r2

⇒ q1 q2
r1 + r2

Note that q1 can be equal to q2. Then the arrows are loops!

We remove all double arrows before continuing with Step 3.



(⇒) From NFAs to Regular Expressions (3)

Step 3: Pick one state q that is neither a starting nor a final
state (if it exists). We remove q as follows.

For all states q1 and q2 and arrows q1
r1→ q and q r2→ q2, we add

an arrow from q1 to q2 as follows:

q1 q q2
r1 r2

r

⇒ q1 q q2
r1 r2

r

r1 · r∗ · r2

for the case that there is an arrow q r→ q, and otherwise:

q1 q q2
r1 r2 ⇒ q1 q q2

r1 r2

r1 · r2

Note that q1 can be equal to q2.

Afterwards adding all these transitions we remove q.

We repeat Step 2 and Step 3 until there is nothing to be done.



(⇒) From NFAs to Regular Expressions (3)

Step 3: Pick one state q that is neither a starting nor a final
state (if it exists). We remove q as follows.

For all states q1 and q2 and arrows q1
r1→ q and q r2→ q2, we add

an arrow from q1 to q2 as follows:

q1 q q2
r1 r2

r

⇒ q1 q q2
r1 r2

r

r1 · r∗ · r2

for the case that there is an arrow q r→ q, and otherwise:

q1 q q2
r1 r2 ⇒ q1 q q2

r1 r2

r1 · r2

Note that q1 can be equal to q2.

Afterwards adding all these transitions we remove q.

We repeat Step 2 and Step 3 until there is nothing to be done.



(⇒) From NFAs to Regular Expressions (3)

Step 3: Pick one state q that is neither a starting nor a final
state (if it exists). We remove q as follows.

For all states q1 and q2 and arrows q1
r1→ q and q r2→ q2, we add

an arrow from q1 to q2 as follows:

q1 q q2
r1 r2

r

⇒ q1 q q2
r1 r2

r

r1 · r∗ · r2

for the case that there is an arrow q r→ q, and otherwise:

q1 q q2
r1 r2 ⇒ q1 q q2

r1 r2

r1 · r2

Note that q1 can be equal to q2.

Afterwards adding all these transitions we remove q.

We repeat Step 2 and Step 3 until there is nothing to be done.



(⇒) From NFAs to Regular Expressions (3)

Step 3: Pick one state q that is neither a starting nor a final
state (if it exists). We remove q as follows.

For all states q1 and q2 and arrows q1
r1→ q and q r2→ q2, we add

an arrow from q1 to q2 as follows:

q1 q q2
r1 r2

r

⇒ q1 q q2
r1 r2

r

r1 · r∗ · r2

for the case that there is an arrow q r→ q, and otherwise:

q1 q q2
r1 r2 ⇒ q1 q q2

r1 r2

r1 · r2

Note that q1 can be equal to q2.

Afterwards adding all these transitions we remove q.

We repeat Step 2 and Step 3 until there is nothing to be done.



(⇒) From NFAs to Regular Expressions (3)

Step 3: Pick one state q that is neither a starting nor a final
state (if it exists). We remove q as follows.

For all states q1 and q2 and arrows q1
r1→ q and q r2→ q2, we add

an arrow from q1 to q2 as follows:

q1 q q2
r1 r2

r

⇒ q1 q q2
r1 r2

r

r1 · r∗ · r2

for the case that there is an arrow q r→ q, and otherwise:

q1 q q2
r1 r2 ⇒ q1 q q2

r1 r2

r1 · r2

Note that q1 can be equal to q2.

Afterwards adding all these transitions we remove q.

We repeat Step 2 and Step 3 until there is nothing to be done.



(⇒) From NFAs to Regular Expressions (4)

Step 4:
If F 6= {q0 }, then the transition graph is finally of the form:

q0

r2

r3

r1 r4

If an arrow ri with 1 ≤ i ≤ 4 does not exist, let ri = ∅.

Then the regular expression is:

L(r∗1 · r2 · (r4 + r3 · r∗1 · r2)
∗) = L(M)

Question
What is the form of the transition graph and regular expression
for the case that F = {q0 }?



(⇒) From NFAs to Regular Expressions (4)

Step 4:
If F 6= {q0 }, then the transition graph is finally of the form:

q0

r2

r3

r1 r4

If an arrow ri with 1 ≤ i ≤ 4 does not exist, let ri = ∅.

Then the regular expression is:

L(r∗1 · r2 · (r4 + r3 · r∗1 · r2)
∗) = L(M)

Question
What is the form of the transition graph and regular expression
for the case that F = {q0 }?



(⇒) From NFAs to Regular Expressions (4)

Step 4:
If F 6= {q0 }, then the transition graph is finally of the form:

q0

r2

r3

r1 r4

If an arrow ri with 1 ≤ i ≤ 4 does not exist, let ri = ∅.

Then the regular expression is:

L(r∗1 · r2 · (r4 + r3 · r∗1 · r2)
∗) = L(M)

Question
What is the form of the transition graph and regular expression
for the case that F = {q0 }?



(⇒) From NFAs to Regular Expressions (4)

Step 4:
If F 6= {q0 }, then the transition graph is finally of the form:

q0

r2

r3

r1 r4

If an arrow ri with 1 ≤ i ≤ 4 does not exist, let ri = ∅.

Then the regular expression is:

L(r∗1 · r2 · (r4 + r3 · r∗1 · r2)
∗) = L(M)

Question
What is the form of the transition graph and regular expression
for the case that F = {q0 }?



(⇒) From NFAs to Regular Expressions (4)

Step 4:
If F 6= {q0 }, then the transition graph is finally of the form:

q0

r2

r3

r1 r4

If an arrow ri with 1 ≤ i ≤ 4 does not exist, let ri = ∅.

Then the regular expression is:

L(r∗1 · r2 · (r4 + r3 · r∗1 · r2)
∗) = L(M)

Question
What is the form of the transition graph and regular expression
for the case that F = {q0 }?



Exercise

Find a regular expression r such that

L(r) = {w ∈ {a,b}∗ | na(w) even and nb(w) is odd }

where
na(w) is the number of a’s in w , and

nb(w) is the number of b’s in w .

Find a regular expression r over {a,b} such that L(r) consists
of all words that do not contain the pattern bab.



Exercise

Find a regular expression r such that

L(r) = {w ∈ {a,b}∗ | na(w) even and nb(w) is odd }

where
na(w) is the number of a’s in w , and

nb(w) is the number of b’s in w .

Find a regular expression r over {a,b} such that L(r) consists
of all words that do not contain the pattern bab.


	Regular Expressions
	Regular Expressions vs Regular Languages

