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Regular Expressions

We define the regular expressions over an alphabet X:
B ¢ is a regular expression

A is a regular expression

ais a regular expression for every a € ©

ri + ro is a regular expression for all regular expr. ry and r»

B rq - I» is a regular expression for all regular expr. ry and r»

r* is a regular expression for all regular expressions r
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We define the regular expressions over an alphabet X:
B ¢ is a regular expression

B )\ is a regular expression

B gis a regular expression for every a €

® ry + 1y is @ regular expression for all regular expr. ry and r»
B ry - Ip is @ regular expression for all regular expr. ry and r»

® r*is a regular expression for all regular expressions r

A regular expression is syntax, describing a language.

Every regular expression r defines a language L(r):
Lo)=0 L(rh+r)=LrK)UL(r)
L(A) ={A} L(ri - r2) = L(r)L(r2)
L(a)={a} foraeX L(r*)=L(r)*
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B script languages such as Perl

Every major programming language has regular expressions.
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Example

Example
L((a+b)-c*)=({alu{bh{c} ={ablc}

Regular expressions are used to search and manipulate text.

For example: Z5 -
o ~Z 0%

= grep in Linux [0-9;,, 91:\)(

| 4 [A‘ZR—;] rj

B script languages such as Perl

Every major programming language has regular expressions.

Exercise

Find a regular expression r over © ={ a, b} such that
L(r) consists of all words that contain the pattern bab:

(@a+b)*-b-a-b-(a+b)" =(a+b)* bab (a+ b)*



Regular Expressions < Regular Languages

Theorem

A language L is regular
< there is a regular expression r with L(r) = L.



Regular Expressions < Regular Languages

Theorem
A language L is regular

< there is a regular expression r with L(r) = L.

Proof.
We need to prove two directions:

® (&) Translate regular expressions into NFAs.

m (=) Translate NFAs into regular expressions.
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Construction (&)
For every regular expression r, we build an NFA M such that
= L(M) = L(r),
® M has precisely one final and one (different) starting state



(&) From Regular Expressions to NFAs

Construction (&)

For every regular expression r, we build an NFA M such that
m L(M) = L(r),
® M has precisely one final and one (different) starting state
We construct M by induction (recursion) on r.

. n+r:

Al rn-rn:



(&) From Regular Expressions to NFAs

Construction (&)

For every regular expression r, we build an NFA M such that
m L(M) = L(r),

® M has precisely one final and one (different) starting state
We construct M by induction (recursion) on r.

a: —>O @ rn+r:

A ry - ra:



(&) From Regular Expressions to NFAs

Construction (&)

For every regular expression r, we build an NFA M such that
m L(M) = L(r),

® M has precisely one final and one (different) starting state
We construct M by induction (recursion) on r.

a: —>O @ rn+r:

Al —>O—}\>© rn-rn:



(&) From Regular Expressions to NFAs

Construction (&)

For every regular expression r, we build an NFA M such that
m L(M) = L(r),

® M has precisely one final and one (different) starting state
We construct M by induction (recursion) on r.
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Construction (&)

For every regular expression r, we build an NFA M such that
m L(M) = L(r),

® M has precisely one final and one (different) starting state
We construct M by induction (recursion) on r.
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Exercise

Understanding the start case
A

A~ N
A —ANNNTA A
rk: —)O—)O—)@
Yy Y -
A

Note that:
® ((a*) - b)* shows that the new starting state is needed

® (a-(b*))* shows that the new final state is needed

What goes wrong without introducing the new start/final state?
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Construction (=)
For every NFA M, we construct a regular expression r with

L(r) = L(M)



(=) From NFAs to Regular Expressions (1)

Construction (=)
For every NFA M, we construct a regular expression r with
L(r) = L(M)
Step 1:
We transform M such that there is
® precisely one initial state

= precisely one final state
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We remove all double arrows.
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Step 2:
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Note that g; can be equal to g». Then the arrows are loops!



(=) From NFAs to Regular Expressions (2)

Step 2:
We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state g; to g» with labels r; and r>
replace them by one arrow with label ry + r»:

r
_l’_
@—@ - @@
2

Note that g; can be equal to g». Then the arrows are loops!

We remove all double arrows before continuing with Step 3.
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Step 3: Pick one state g that is neither a starting nor a final
state (if it exists). We remove g as follows.
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Step 3: Pick one state g that is neither a starting nor a final
state (if it exists). We remove g as follows.

For all states g; and g» and arrows gy R g and g LN Qo, We add
an arrow from g; to g» as follows:

r r
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for the case that there is an arrow g = g, and otherwise:

@0~ ® - @—0—®@
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(=) From NFAs to Regular Expressions (3)

Step 3: Pick one state g that is neither a starting nor a final
state (if it exists). We remove g as follows.

For all states g; and g» and arrows gy R g and g LN Qo, We add
an arrow from g; to g» as follows:

r r
ry Q) r I Q) 2
@—0@—® > @W—0—@
ry-r<-nr

for the case that there is an arrow g = g, and otherwise:

r- r: rq o
@—0@0—@ - @—0—@
rn-r
Note that g; can be equal to go.

Afterwards adding all these transitions we remove g.

We repeat Step 2 and Step 3 until there is nothing to be done.
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Step 4:
If F #{qo}, then the transition graph is finally of the form:
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O 2 O
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(=) From NFAs to Regular Expressions (4)

Step 4:
If F #{qo}, then the transition graph is finally of the form:
rq rq

O r O
—
=
@0
I3
If an arrow r; with 1 < j < 4 does not exist, let r; = @.

Then the regular expression is:

L(ry-rp-(a+r-rf-rn)*) = LM)

Question

What is the form of the transition graph and regular expression
for the case that F ={qy}?



Exercise

Find a regular expression r such that
L(r)={w e{a,b}* | ng(w) even and np(w) is odd }
where
® ny(w) is the number of a's in w, and

B ny(w) is the number of b’s in w.



Exercise

Find a regular expression r such that
L(r)={w e{a,b}* | ng(w) even and np(w) is odd }
where
® ngy(w) is the number of a's in w, and

B ny(w) is the number of b’s in w.

Find a regular expression r over {a, b} such that L(r) consists
of all words that do not contain the pattern bab.
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