Automata Theory :: Regular Expressions

Jörg Endrullis

Vrije Universiteit Amsterdam

Regular Expressions

We define the **regular expressions** over an alphabet Σ :

- Ø is a regular expression
- \mathbf{I} is a regular expression
- **a** is a regular expression for every $a \in \Sigma$
- **r_1 + r_2** is a regular expression for all regular expr. r_1 and r_2
- **r_1 \cdot r_2** is a regular expression for all regular expr. r_1 and r_2
- r* is a regular expression for all regular expressions r

Regular Expressions

We define the **regular expressions** over an alphabet Σ :

- Ø is a regular expression
- λ is a regular expression
- **a** is a regular expression for every $a \in \Sigma$
- **r_1 + r_2** is a regular expression for all regular expr. r_1 and r_2
- **r_1 \cdot r_2** is a regular expression for all regular expr. r_1 and r_2
- r* is a regular expression for all regular expressions r

A regular expression is syntax, describing a language.

Every **regular expression** r defines a **language** L(r):

 $\begin{array}{ll} L(\varnothing) = \varnothing & L(r_1 + r_2) = L(r_1) \cup L(r_2) \\ L(\lambda) = \{\lambda\} & L(r_1 \cdot r_2) = L(r_1)L(r_2) \\ L(a) = \{a\} & \text{for } a \in \Sigma & L(r^*) = L(r)^* \end{array}$

Example

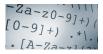
$$L((a+b) \cdot c^*) = (\{a\} \cup \{b\}) \{c\}^* = \{a,b\} \{c\}^*$$

Example $L((a+b) \cdot c^*) = (\{a\} \cup \{b\})\{c\}^* = \{a,b\}\{c\}^*$

Regular expressions are used to search and manipulate text.

For example:

grep in Linux



script languages such as Perl

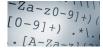
Every major programming language has regular expressions.

Example $L((a+b) \cdot c^*) = (\{a\} \cup \{b\})\{c\}^* = \{a,b\}\{c\}^*$

Regular expressions are used to search and manipulate text.

For example:

grep in Linux



script languages such as Perl

Every major programming language has regular expressions.

Exercise

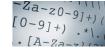
Find a regular expression *r* over $\Sigma = \{a, b\}$ such that L(r) consists of all words that contain the pattern *bab*:

Example $L((a+b) \cdot c^*) = (\{a\} \cup \{b\})\{c\}^* = \{a,b\}\{c\}^*$

Regular expressions are used to search and manipulate text.

For example:

grep in Linux



script languages such as Perl

Every major programming language has regular expressions.

Exercise

Find a regular expression *r* over $\Sigma = \{a, b\}$ such that L(r) consists of all words that contain the pattern *bab*: $(a+b)^* \cdot b \cdot a \cdot b \cdot (a+b)^*$

Example $L((a+b) \cdot c^*) = (\{a\} \cup \{b\})\{c\}^* = \{a,b\}\{c\}^*$

Regular expressions are used to search and manipulate text.

For example:

grep in Linux

script languages such as Perl

Every major programming language has regular expressions.

Exercise

Find a regular expression *r* over $\Sigma = \{a, b\}$ such that L(r) consists of all words that contain the pattern *bab*: $(a+b)^* \cdot b \cdot a \cdot b \cdot (a+b)^* = (a+b)^* bab (a+b)^*$

Regular Expressions \iff Regular Languages

Theorem

A language L is regular

 \iff there is a **regular expression** *r* with L(r) = L.

Theorem

A language L is regular

 \iff there is a **regular expression** *r* with L(r) = L.

Proof.

We need to prove two directions:

- (\Leftarrow) Translate regular expressions into NFAs.
- (\Rightarrow) Translate NFAs into regular expressions.

Construction (⇐)

For every regular expression r, we build an NFA M such that

- $\bullet L(M) = L(r),$
- M has precisely one final and one (different) starting state

(\Leftarrow) From Regular Expressions to NFAs

Construction (⇐)

For every regular expression r, we build an NFA M such that

$$\bullet L(M) = L(r),$$

$$\emptyset: \qquad r_1 + r_2:$$

$$\lambda: \qquad r_1 \cdot r_2:$$

$$a: \qquad r^*:$$

Construction (⇐)

For every regular expression r, we build an NFA M such that

$$\bullet L(M) = L(r),$$

$$\emptyset: \longrightarrow \bigcirc \qquad \bigcirc \qquad r_1 + r_2:$$

$$\lambda: \qquad \qquad r_1 \cdot r_2:$$

$$a: \qquad \qquad r^*:$$

Construction (⇐)

For every regular expression r, we build an NFA M such that

$$\bullet L(M) = L(r),$$

$$\emptyset: \rightarrow \bigcirc \qquad \bigcirc \qquad r_1 + r_2:$$

$$\lambda: \rightarrow \bigcirc \stackrel{\lambda}{\rightarrow} \bigcirc \qquad r_1 \cdot r_2:$$

$$a: \qquad r^*:$$

Construction (⇐)

For every regular expression r, we build an NFA M such that

$$\bullet L(M) = L(r),$$

$$\emptyset: \rightarrow \bigcirc \qquad \bigcirc \qquad r_1 + r_2:$$

$$\lambda: \rightarrow \bigcirc \xrightarrow{\lambda} \bigcirc \qquad r_1 \cdot r_2:$$

$$a: \rightarrow \bigcirc \xrightarrow{a} \bigcirc \qquad r^*:$$

Construction (⇐)

For every regular expression r, we build an NFA M such that

$$\bullet L(M) = L(r),$$

$$\varnothing: \rightarrow \bigcirc \qquad r_1 + r_2: \rightarrow \bigcirc \lambda & \bigcirc r_1 & \ddots & \searrow \lambda \\ \lambda & \bigcirc r_2 & \searrow \lambda \\ \lambda: \rightarrow \bigcirc \lambda & \frown & r_1 \cdot r_2: \\ a: \rightarrow \bigcirc \stackrel{\lambda}{\rightarrow} & r^*:$$

Construction (⇐)

For every regular expression r, we build an NFA M such that

 $\bullet L(M) = L(r),$

$$\varnothing: \rightarrow \bigcirc \qquad r_1 + r_2: \rightarrow \bigcirc \lambda & \bigcirc r_1 & \searrow \lambda \\ \lambda & \bigcirc r_2 & \searrow \lambda \\ \lambda: \rightarrow \bigcirc \lambda & \bigcirc \qquad r_1 \cdot r_2: \rightarrow \bigcirc r_1 & \bigcirc \lambda & \bigcirc r_2 & \bigcirc \\ a: \rightarrow \bigcirc \stackrel{a}{\rightarrow} & \qquad r^*:$$

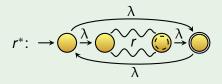
Construction (⇐)

For every regular expression r, we build an NFA M such that

 $\bullet L(M) = L(r),$

Exercise

Understanding the start case



Note that:

- $((a^*) \cdot b)^*$ shows that the new starting state is needed
- $(a \cdot (b^*))^*$ shows that the new final state is needed

What goes wrong without introducing the new start/final state?

Construction (\Rightarrow)

For every NFA *M*, we construct a regular expression *r* with

L(r) = L(M)

Construction (\Rightarrow)

For every NFA *M*, we construct a regular expression *r* with

L(r) = L(M)

Step 1:

We transform M such that there is

- precisely one initial state
- precisely one final state

Step 2:

We remove all double arrows.

Step 2:

We remove all double arrows.

We use transition graphs with regular expressions as labels.

Step 2:

We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q_1 to q_2 with labels r_1 and r_2 replace them by one arrow with label $r_1 + r_2$:

Step 2:

We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q_1 to q_2 with labels r_1 and r_2 replace them by one arrow with label $r_1 + r_2$:

$$(q_1) \xrightarrow{r_1} (q_2) \Rightarrow (q_1) \xrightarrow{r_1 + r_2} (q_2)$$

Note that q_1 can be equal to q_2 . Then the arrows are loops!

Step 2:

We remove all double arrows.

We use transition graphs with regular expressions as labels.

If there are 2 arrows from a state q_1 to q_2 with labels r_1 and r_2 replace them by one arrow with label $r_1 + r_2$:

$$(q_1) \xrightarrow{r_1} (q_2) \Rightarrow (q_1) \xrightarrow{r_1 + r_2} (q_2)$$

Note that q_1 can be equal to q_2 . Then the arrows are loops! We remove all double arrows before continuing with Step 3.

Step 3: Pick one state q that is neither a starting nor a final state (if it exists). We remove q as follows.

Step 3: Pick one state q that is neither a starting nor a final state (if it exists). We remove q as follows.

For all states q_1 and q_2 and arrows $q_1 \xrightarrow{r_1} q$ and $q \xrightarrow{r_2} q_2$, we add an arrow from q_1 to q_2 as follows:

for the case that there is an arrow $q \xrightarrow{r} q$, and otherwise:

$$(q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2) \Rightarrow (q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2)$$

Step 3: Pick one state q that is neither a starting nor a final state (if it exists). We remove q as follows.

For all states q_1 and q_2 and arrows $q_1 \xrightarrow{r_1} q$ and $q \xrightarrow{r_2} q_2$, we add an arrow from q_1 to q_2 as follows:



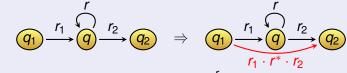
for the case that there is an arrow $q \xrightarrow{r} q$, and otherwise:

$$(q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2) \Rightarrow (q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2)$$

Note that q_1 can be equal to q_2 .

Step 3: Pick one state q that is neither a starting nor a final state (if it exists). We remove q as follows.

For all states q_1 and q_2 and arrows $q_1 \xrightarrow{r_1} q$ and $q \xrightarrow{r_2} q_2$, we add an arrow from q_1 to q_2 as follows:



for the case that there is an arrow $q \xrightarrow{r} q$, and otherwise:

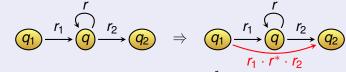
$$(q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2) \Rightarrow (q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2)$$

Note that q_1 can be equal to q_2 .

Afterwards adding all these transitions we remove *q*.

Step 3: Pick one state q that is neither a starting nor a final state (if it exists). We remove q as follows.

For all states q_1 and q_2 and arrows $q_1 \xrightarrow{r_1} q$ and $q \xrightarrow{r_2} q_2$, we add an arrow from q_1 to q_2 as follows:



for the case that there is an arrow $q \xrightarrow{r} q$, and otherwise:

$$(q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2) \Rightarrow (q_1) \xrightarrow{r_1} (q) \xrightarrow{r_2} (q_2)$$

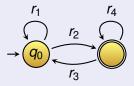
Note that q_1 can be equal to q_2 .

Afterwards adding all these transitions we remove q.

We repeat Step 2 and Step 3 until there is nothing to be done.

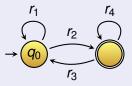
Step 4:

If $F \neq \{q_0\}$, then the transition graph is finally of the form:



Step 4:

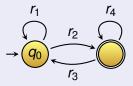
If $F \neq \{q_0\}$, then the transition graph is finally of the form:



If an arrow r_i with $1 \le i \le 4$ does not exist, let $r_i = \emptyset$.

Step 4:

If $F \neq \{q_0\}$, then the transition graph is finally of the form:

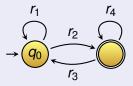


If an arrow r_i with $1 \le i \le 4$ does not exist, let $r_i = \emptyset$.

Then the regular expression is:

Step 4:

If $F \neq \{q_0\}$, then the transition graph is finally of the form:



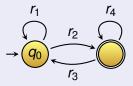
If an arrow r_i with $1 \le i \le 4$ does not exist, let $r_i = \emptyset$.

Then the regular expression is:

$$L(r_1^* \cdot r_2 \cdot (r_4 + r_3 \cdot r_1^* \cdot r_2)^*) = L(M)$$

Step 4:

If $F \neq \{q_0\}$, then the transition graph is finally of the form:



If an arrow r_i with $1 \le i \le 4$ does not exist, let $r_i = \emptyset$.

Then the regular expression is:

$$L(r_1^* \cdot r_2 \cdot (r_4 + r_3 \cdot r_1^* \cdot r_2)^*) = L(M)$$

Question

What is the form of the transition graph and regular expression for the case that $F = \{q_0\}$?

Find a regular expression r such that

 $L(r) = \{ w \in \{a, b\}^* \mid n_a(w) \text{ even and } n_b(w) \text{ is odd } \}$

where

- $n_a(w)$ is the number of *a*'s in *w*, and
- $n_b(w)$ is the number of *b*'s in *w*.

Find a regular expression r such that

 $L(r) = \{ w \in \{a, b\}^* \mid n_a(w) \text{ even and } n_b(w) \text{ is odd } \}$

where

• $n_a(w)$ is the number of *a*'s in *w*, and

• $n_b(w)$ is the number of *b*'s in *w*.

Find a regular expression *r* over $\{a, b\}$ such that L(r) consists of all words that do not contain the pattern *bab*.