Automata Theory :: (Regular) Grammars

Jörg Endrullis

Vrije Universiteit Amsterdam

Introduction to Grammars

A grammar defines a language.

Applications areas:

- natural language
- artificial intelligence
- syntax of programming languages

Example

- $\langle \texttt{sentence} \rangle \quad \rightarrow \quad \langle \texttt{article} \rangle \; \langle \texttt{noun} \rangle \; \langle \texttt{verb} \rangle \; \langle \texttt{article} \rangle \; \langle \texttt{noun} \rangle$
 - $\langle \text{article} \rangle \quad \rightarrow \quad \text{the}$
 - $\langle \text{article} \rangle \ \ \rightarrow \ \ a$
 - $\langle \text{noun}\rangle \quad \rightarrow \quad \text{farmer}$
 - $\langle {\sf noun}
 angle \ o \ {\sf cow}$
 - $\langle \text{verb} \rangle \rightarrow \text{milks}$

With these grammar rules we can construct a (sentence).

Introduction to Grammars

$\langle \text{sentence} \rangle$	\rightarrow	$\langle \text{article} \rangle \langle \text{noun} \rangle \langle \text{verb} \rangle \langle \text{article} \rangle \langle \text{noun} \rangle$
$\langle article \rangle$	\rightarrow	the
$\langle article \rangle$	\rightarrow	а
$\langle noun \rangle$	\rightarrow	farmer
$\langle noun \rangle$	\rightarrow	cow
$\langle verb \rangle$	\rightarrow	milks

The farmer milks a cow is a sentence in the language.

 $\langle \text{sentence} \rangle \Rightarrow \langle \text{article} \rangle \langle \text{noun} \rangle \langle \text{verb} \rangle \langle \text{article} \rangle \langle \text{noun} \rangle$

- \Rightarrow the $\langle noun \rangle \langle verb \rangle \langle article \rangle \langle noun \rangle$
- \Rightarrow the farmer $\langle verb \rangle \langle article \rangle \langle noun \rangle$
- \Rightarrow the farmer milks $\langle article \rangle \langle noun \rangle$
- \Rightarrow the farmer milks a $\langle noun \rangle$
- \Rightarrow the farmer milks a cow

Grammars

A grammar G = (V, T, S, P) consists of:

- finite set V of non-terminals (or variables)
- finite set T of terminals
- a start symbol $S \in V$
- finite set *P* of **production rules** $x \rightarrow y$ where
 - $x \in (V \cup T)^+$ containing at least one symbol from V

• $y \in (V \cup T)^*$

In the previous example:

- variables: $\langle \text{sentence} \rangle$, $\langle \text{article} \rangle$, $\langle \text{noun} \rangle$, $\langle \text{verb} \rangle$
- terminals: the, a, farmer, cow, milks
- starting symbol: (sentence)

A grammar is **context-free** if $x \in V$ for every rule $x \to y$.

B(ackus) N(aur) F(orm) is a Context-Free Grammar

The BNF (Backus Naur Form) is often used to define the syntax of programming languages. These are context-free grammars!

Example

$\langle stm \rangle$	\rightarrow	$\langle var \rangle$:= $\langle expr \rangle$
(atuma)		(atma) + (atma)

- $\langle \mathsf{stm} \rangle \rightarrow \langle \mathsf{stm} \rangle$; $\langle \mathsf{stm} \rangle$
- $\langle stm \rangle \quad \rightarrow \quad \text{begin} \; \langle stm \rangle \; \text{end}$
- $\langle stm \rangle \quad \rightarrow \quad \text{if } \langle cond \rangle \ \text{then} \ \langle stm \rangle \ \text{else} \ \langle stm \rangle$
- $\langle stm \rangle \quad \rightarrow \quad \textbf{while} \; \langle cond \rangle \; \textbf{do} \; \langle stm \rangle$
- $\langle \mathsf{cond} \rangle \rightarrow \cdots$
 - $\langle var \rangle \rightarrow \cdots$
- $\langle expr \rangle \rightarrow \cdots$
 - $\cdots \quad \rightarrow \quad \cdots$

In BNF, non-terminals (variables) are indicated by \langle and $\rangle.$

Grammar Derivations

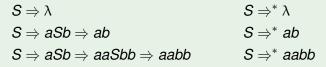
If $x \to y$ is a production rule, then we have a **derivation step** $uxv \Rightarrow uyv$

for every $u, v \in (V \cup T)^*$.

 $G = (\{S\}, \{a, b\}, S, P)$, where P consists of

 $S \rightarrow aSb$ $S \rightarrow \lambda$

Example derivations:



A derivation \Rightarrow^* is the reflexive, transitive closure of \Rightarrow .

Thus there is a derivation $u \Rightarrow^* v$ if v can be obtained from u by zero or more derivation steps.

Languages Generated by Grammars

The **language generated** by a grammar G = (V, T, S, P) is $L(G) = \{ w \in T^* \mid S \Rightarrow^* w \}$

The language consists of all words that

- contain only terminal letters (no variables), and
- can be derived from the start symbol

 $G = (\{S\}, \{a, b\}, S, P),$ where P consists of S
ightarrow aSb $S
ightarrow \lambda$

What is the language generated by G?

 $L(G) = \{ a^n b^n \mid n \ge 0 \}$

Recall that this language is not regular.

Notational Conventions for Grammars

Notational Conventions

When defining grammars, we use the following conventions:

- upper case letters for variables (non-terminals)
- Iower case letters for terminals
- $V \rightarrow w_1 \mid \ldots \mid w_n$ is shorthand for *n* rules

$$V \rightarrow w_1$$

 \vdots
 $V \rightarrow w_n$

Often, we only specify the production rules.

What languages are generated by these grammars?

$$L(G_1) = \{a^n b^{n+1} \mid n \ge 0\} = L(G_2) = \{a^n b^{n+1} \mid n \ge 0\}$$

Find a grammar G such that

$$L(G) = \{a, b\}^* \{c\} \{b, c\}^*$$

There are many possible solutions!

One possible solution is:

Exercises (2)

A word $w = a_1 a_2 \cdots a_n$ is called **palindrome** if $w = w^R$, that is $a_1 a_2 \cdots a_n = a_n \cdots a_2 a_1$

For instance **hannah** is a palindrome.

Find a grammar *G* that generates all palindromes over the alphabet $\Sigma = \{a, b\}$. In other words

 $L(G) = \{ w \in \Sigma^* \mid w \text{ is a palindrome} \}$

Find a grammar *G* that generates all non-palindromes over the alphabet $\Sigma = \{a, b\}$. In other words

 $L(G) = \{ w \in \Sigma^* \mid w \text{ is not a palindrome} \}$

Regular Grammars

Right Linear Grammars

A grammar G = (V, T, S, P) is **right linear** if all production rules are of the form

 $A \rightarrow uB$ or $A \rightarrow u$ with $A, B \in V$ and $u \in T^*$. Moreover *G* is **strictly right linear** if $|u| \le 1$ (i.e. $u \in (T \cup \{\lambda\})$).

Construct a right linear grammar G such that

 $L(G) = \{a, b\}^* \{aa\} \{b\}^*$

Construct a right linear grammar *G* such that $L(G) = \{ab\} (\{a\}^* \{cb\})^* \{b\}$

(Strictly) Right Linear Grammars

Theorem

Let *G* be a right linear grammar *G*. There exists a **strictly** right linear grammar *H* such that L(G) = L(H).

Construction

Let G = (V, T, S, P) be a right linear grammar.

Assume that we have a production rule γ of the form

 $A \rightarrow u(B)$

with |u| > 1. Then u = aw for some $a \in T$ and $w \in T^+$.

Let *X* be a fresh variable ($X \notin (V \cup T)$).

We add X to V and split the rule γ into:

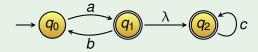
 $A \rightarrow aX$ $X \rightarrow w(B)$

Then $A \rightarrow aX \rightarrow aw(B) = u(B)$. It follows L(G) = L(H). Repeat splitting until $|u| \le 1$ for all rules.

Right Linear Grammars and Regular Languages

From NFAs to Right Linear Grammars

Consider the following NFA M



Construct a right linear grammar G such that:

L(M) = L(G)

From NFAs to Right Linear Grammars

For every NFA *M* there exists a right linear grammar *G* with L(G) = L(M)

Construction

Let $M = (Q, \Sigma, \delta, \{q_0\}, F)$ be an NFA with a single starting state.

Define G = (V, T, S, P) with V = Q and $T = \Sigma$ and $S = q_0$.

The set P consists of the following production rules

 $\begin{array}{ll} q \to \alpha q' & \quad \text{for every } q' \in \delta(q, \alpha) \text{ where } \alpha \in \Sigma \cup \{\lambda\} \\ q \to \lambda & \quad \text{for every } q \in F \end{array}$

Then: $A \Rightarrow^* uB$ in $G \iff A \xrightarrow{u} B$ in M.

It follows that, L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar *G* there exists an NFA *M* with L(M) = L(G)

Construction (\Leftarrow) Let G = (V, T, S, P) be a right linear grammar. Make G to strictly right linear. Then all rules are of the form $A \rightarrow \mu$ or $A \rightarrow \mu B$ for $A, B \in V, u \in (T \cup \{\lambda\})$. Let NFA $M = (Q, \Sigma, \delta, \{S\}, F)$ with $\Sigma = T \qquad Q = V \cup \{\Omega\} \qquad F = \{\Omega\}$ where $\Omega \notin V$. The transitions δ are given by $A \xrightarrow{u} B$ for every $A \rightarrow uB$ in G $A \xrightarrow{u} O$ for every $A \rightarrow u$ in G Then $S \Rightarrow^* w \in T^* \iff M$ accepts w. Hence L(G) = L(M).

Construct an NFA that accepts the language generated by $S \rightarrow aT \qquad \qquad T \rightarrow abcS \mid b$

Note that $T \rightarrow abS \mid b$ is short for two rules:

$$egin{array}{ll} T
ightarrow abcS \ T
ightarrow b \end{array}$$

Theorem

Language L is regular

 \iff there is a **right linear grammar** *G* with L(G) = L

Proof.

The proof consists of two directions:

- (\Rightarrow) Translating NFAs to right linear grammars.
- (\Leftarrow) Translate right linear grammars to NFAs.

We have already seen both constructions.

Left Linear Grammars

Left Linear Grammars

A grammar G = (V, T, S, P) is **left linear** if all production rules are of the form

 $A \rightarrow Bu$ or $A \rightarrow u$

with $A, B \in V$ and $u \in T^*$.

(Difference with right linear grammars highlighted in red.)

Theorem

Language L is regular

 \iff there is a left linear grammar G with L(G) = L

Proof.

L is regular $\iff L^R$ is regular

 \iff right linear grammar for L^R

 \iff left linear grammar for L

(For the last step, reverse both sides of all production rules.)

Mixing right **and** left linear rules, the generated language is **not** always regular.

Example

Let G be the grammar

Every rule of G is either right or left linear.

However, the language $L(G) = \{a^n b^n \mid n \ge 0\}$ is **not** regular.