
Automata Theory :: (Regular) Grammars

Jörg Endrullis

Vrije Universiteit Amsterdam

Introduction to Grammars

A grammar defines a language.

Applications areas:
natural language
artificial intelligence
syntax of programming languages

Example

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

With these grammar rules we can construct a 〈sentence〉.

Introduction to Grammars

A grammar defines a language.

Applications areas:
natural language
artificial intelligence
syntax of programming languages

Example

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

With these grammar rules we can construct a 〈sentence〉.

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉⇒ the 〈noun〉〈verb〉〈article〉〈noun〉⇒ the farmer 〈verb〉〈article〉〈noun〉⇒ the farmer milks 〈article〉〈noun〉⇒ the farmer milks a 〈noun〉⇒ the farmer milks a cow

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉

⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉⇒ the 〈noun〉〈verb〉〈article〉〈noun〉⇒ the farmer 〈verb〉〈article〉〈noun〉⇒ the farmer milks 〈article〉〈noun〉⇒ the farmer milks a 〈noun〉⇒ the farmer milks a cow

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉

⇒ the 〈noun〉〈verb〉〈article〉〈noun〉⇒ the farmer 〈verb〉〈article〉〈noun〉⇒ the farmer milks 〈article〉〈noun〉⇒ the farmer milks a 〈noun〉⇒ the farmer milks a cow

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉⇒ the 〈noun〉〈verb〉〈article〉〈noun〉

⇒ the farmer 〈verb〉〈article〉〈noun〉⇒ the farmer milks 〈article〉〈noun〉⇒ the farmer milks a 〈noun〉⇒ the farmer milks a cow

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉⇒ the 〈noun〉〈verb〉〈article〉〈noun〉⇒ the farmer 〈verb〉〈article〉〈noun〉

⇒ the farmer milks 〈article〉〈noun〉⇒ the farmer milks a 〈noun〉⇒ the farmer milks a cow

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉⇒ the 〈noun〉〈verb〉〈article〉〈noun〉⇒ the farmer 〈verb〉〈article〉〈noun〉⇒ the farmer milks 〈article〉〈noun〉

⇒ the farmer milks a 〈noun〉⇒ the farmer milks a cow

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉⇒ the 〈noun〉〈verb〉〈article〉〈noun〉⇒ the farmer 〈verb〉〈article〉〈noun〉⇒ the farmer milks 〈article〉〈noun〉⇒ the farmer milks a 〈noun〉

⇒ the farmer milks a cow

Introduction to Grammars

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

The farmer milks a cow is a sentence in the language.

〈sentence〉⇒ 〈article〉〈noun〉〈verb〉〈article〉〈noun〉⇒ the 〈noun〉〈verb〉〈article〉〈noun〉⇒ the farmer 〈verb〉〈article〉〈noun〉⇒ the farmer milks 〈article〉〈noun〉⇒ the farmer milks a 〈noun〉⇒ the farmer milks a cow

Grammars

A grammar G = (V ,T ,S,P) consists of:
finite set V of non-terminals (or variables)
finite set T of terminals
a start symbol S ∈ V
finite set P of production rules x → y where

x ∈ (V ∪ T)+ containing at least one symbol from V

y ∈ (V ∪ T)∗

In the previous example:
variables: 〈sentence〉, 〈article〉, 〈noun〉, 〈verb〉

terminals: the, a, farmer, cow, milks

starting symbol: 〈sentence〉

A grammar is context-free if x ∈ V for every rule x → y .

Grammars

A grammar G = (V ,T ,S,P) consists of:
finite set V of non-terminals (or variables)
finite set T of terminals
a start symbol S ∈ V
finite set P of production rules x → y where

x ∈ (V ∪ T)+ containing at least one symbol from V

y ∈ (V ∪ T)∗

In the previous example:
variables: 〈sentence〉, 〈article〉, 〈noun〉, 〈verb〉

terminals: the, a, farmer, cow, milks

starting symbol: 〈sentence〉

A grammar is context-free if x ∈ V for every rule x → y .

B(ackus) N(aur) F(orm) is a Context-Free Grammar

The BNF (Backus Naur Form) is often used to define the syntax
of programming languages. These are context-free grammars!

Example

〈stm〉 → 〈var〉 := 〈expr〉
〈stm〉 → 〈stm〉 ; 〈stm〉
〈stm〉 → begin 〈stm〉 end
〈stm〉 → if 〈cond〉 then 〈stm〉 else 〈stm〉
〈stm〉 → while 〈cond〉 do 〈stm〉
〈cond〉 → · · ·
〈var〉 → · · ·
〈expr〉 → · · ·
· · · → · · ·

In BNF, non-terminals (variables) are indicated by 〈 and 〉.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S

⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S

⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb

⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S

⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb

⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb ⇒ aaSbb

⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T)∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.

Languages Generated by Grammars

The language generated by a grammar G = (V ,T ,S,P) is

L(G) = {w ∈ T ∗ | S ⇒∗ w }

The language consists of all words that

contain only terminal letters (no variables), and

can be derived from the start symbol

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

What is the language generated by G?

L(G) =

{anbn | n ≥ 0 }

Recall that this language is not regular.

Languages Generated by Grammars

The language generated by a grammar G = (V ,T ,S,P) is

L(G) = {w ∈ T ∗ | S ⇒∗ w }

The language consists of all words that

contain only terminal letters (no variables), and

can be derived from the start symbol

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

What is the language generated by G?

L(G) =

{anbn | n ≥ 0 }

Recall that this language is not regular.

Languages Generated by Grammars

The language generated by a grammar G = (V ,T ,S,P) is

L(G) = {w ∈ T ∗ | S ⇒∗ w }

The language consists of all words that

contain only terminal letters (no variables), and

can be derived from the start symbol

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

What is the language generated by G?

L(G) = {anbn | n ≥ 0 }

Recall that this language is not regular.

Notational Conventions for Grammars

Notational Conventions
When defining grammars, we use the following conventions:

upper case letters for variables (non-terminals)

lower case letters for terminals

V → w1 | . . . | wn is shorthand for n rules

V → w1...
V → wn

Often, we only specify the production rules.

G1 : S → Ab G2 : S → aSb
A → aAb | λ S → b

What languages are generated by these grammars?

L(G1) =

{anbn+1 | n ≥ 0} = L(G2) = {anbn+1 | n ≥ 0}

Notational Conventions for Grammars

Notational Conventions
When defining grammars, we use the following conventions:

upper case letters for variables (non-terminals)

lower case letters for terminals

V → w1 | . . . | wn is shorthand for n rules

V → w1...
V → wn

Often, we only specify the production rules.

G1 : S → Ab G2 : S → aSb
A → aAb | λ S → b

What languages are generated by these grammars?

L(G1) =

{anbn+1 | n ≥ 0} = L(G2) = {anbn+1 | n ≥ 0}

Notational Conventions for Grammars

Notational Conventions
When defining grammars, we use the following conventions:

upper case letters for variables (non-terminals)

lower case letters for terminals

V → w1 | . . . | wn is shorthand for n rules

V → w1...
V → wn

Often, we only specify the production rules.

G1 : S → Ab G2 : S → aSb
A → aAb | λ S → b

What languages are generated by these grammars?

L(G1) =

{anbn+1 | n ≥ 0} = L(G2) = {anbn+1 | n ≥ 0}

Notational Conventions for Grammars

Notational Conventions
When defining grammars, we use the following conventions:

upper case letters for variables (non-terminals)

lower case letters for terminals

V → w1 | . . . | wn is shorthand for n rules

V → w1...
V → wn

Often, we only specify the production rules.

G1 : S → Ab G2 : S → aSb
A → aAb | λ S → b

What languages are generated by these grammars?

L(G1) = {anbn+1 | n ≥ 0}

= L(G2) = {anbn+1 | n ≥ 0}

Notational Conventions for Grammars

Notational Conventions
When defining grammars, we use the following conventions:

upper case letters for variables (non-terminals)

lower case letters for terminals

V → w1 | . . . | wn is shorthand for n rules

V → w1...
V → wn

Often, we only specify the production rules.

G1 : S → Ab G2 : S → aSb
A → aAb | λ S → b

What languages are generated by these grammars?

L(G1) = {anbn+1 | n ≥ 0}

=

L(G2) =

{anbn+1 | n ≥ 0}

Notational Conventions for Grammars

Notational Conventions
When defining grammars, we use the following conventions:

upper case letters for variables (non-terminals)

lower case letters for terminals

V → w1 | . . . | wn is shorthand for n rules

V → w1...
V → wn

Often, we only specify the production rules.

G1 : S → Ab G2 : S → aSb
A → aAb | λ S → b

What languages are generated by these grammars?

L(G1) = {anbn+1 | n ≥ 0} = L(G2) = {anbn+1 | n ≥ 0}

Exercises (1)

Find a grammar G such that

L(G) = {a,b}∗ {c} {b, c}∗

There are many possible solutions!

One possible solution is:

S → XcY

X → aX | bX | λ

Y → bY | cY | λ

Exercises (1)

Find a grammar G such that

L(G) = {a,b}∗ {c} {b, c}∗

There are many possible solutions!

One possible solution is:

S → XcY

X → aX | bX | λ

Y → bY | cY | λ

Exercises (1)

Find a grammar G such that

L(G) = {a,b}∗ {c} {b, c}∗

There are many possible solutions!

One possible solution is:

S → XcY

X → aX | bX | λ

Y → bY | cY | λ

Exercises (1)

Find a grammar G such that

L(G) = {a,b}∗ {c} {b, c}∗

There are many possible solutions!

One possible solution is:

S → XcY
X → aX | bX | λ

Y → bY | cY | λ

Exercises (1)

Find a grammar G such that

L(G) = {a,b}∗ {c} {b, c}∗

There are many possible solutions!

One possible solution is:

S → XcY
X → aX | bX | λ

Y → bY | cY | λ

Exercises (2)

A word w = a1a2 · · · an is called palindrome if w = wR, that is

a1a2 · · · an = an · · · a2a1

For instance hannah is a palindrome.

Find a grammar G that generates all palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is a palindrome}

Find a grammar G that generates all non-palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is not a palindrome }

Exercises (2)

A word w = a1a2 · · · an is called palindrome if w = wR, that is

a1a2 · · · an = an · · · a2a1

For instance hannah is a palindrome.

Find a grammar G that generates all palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is a palindrome}

Find a grammar G that generates all non-palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is not a palindrome }

Exercises (2)

A word w = a1a2 · · · an is called palindrome if w = wR, that is

a1a2 · · · an = an · · · a2a1

For instance hannah is a palindrome.

Find a grammar G that generates all palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is a palindrome}

Find a grammar G that generates all non-palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is not a palindrome }

Regular Grammars

Right Linear Grammars

A grammar G = (V ,T ,S,P) is right linear if all production
rules are of the form

A → uB or A → u

with A,B ∈ V and u ∈ T ∗.
Moreover G is strictly right linear if |u| ≤ 1 (i.e. u ∈ (T ∪ {λ})).

Construct a right linear grammar G such that

L(G) = {a,b}∗ {aa} {b}∗

Construct a right linear grammar G such that

L(G) = {ab}
(
{a}∗ {cb}

)∗
{b}

Right Linear Grammars

A grammar G = (V ,T ,S,P) is right linear if all production
rules are of the form

A → uB or A → u

with A,B ∈ V and u ∈ T ∗.
Moreover G is strictly right linear if |u| ≤ 1 (i.e. u ∈ (T ∪ {λ})).

Construct a right linear grammar G such that

L(G) = {a,b}∗ {aa} {b}∗

Construct a right linear grammar G such that

L(G) = {ab}
(
{a}∗ {cb}

)∗
{b}

Right Linear Grammars

A grammar G = (V ,T ,S,P) is right linear if all production
rules are of the form

A → uB or A → u

with A,B ∈ V and u ∈ T ∗.
Moreover G is strictly right linear if |u| ≤ 1 (i.e. u ∈ (T ∪ {λ})).

Construct a right linear grammar G such that

L(G) = {a,b}∗ {aa} {b}∗

Construct a right linear grammar G such that

L(G) = {ab}
(
{a}∗ {cb}

)∗
{b}

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T)).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.

Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T)).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1.

Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T)).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.

Let X be a fresh variable (X 6∈ (V ∪ T)).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T)).

We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T)).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B).

It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T)).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).

Repeat splitting until |u| ≤ 1 for all rules.

(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T)).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.

Right Linear Grammars and Regular Languages

From NFAs to Right Linear Grammars

Consider the following NFA M

q0 q1 q2

a

b

λ c

Construct a right linear grammar G such that:

L(M) = L(G)

From NFAs to Right Linear Grammars

For every NFA M there exists a right linear grammar G with

L(G) = L(M)

Construction
Let M = (Q, Σ, δ, {q0},F) be an NFA with a single starting state.

Define G = (V ,T ,S,P) with V = Q and T = Σ and S = q0.

The set P consists of the following production rules

q → αq ′ for every q ′ ∈ δ(q, α) where α ∈ Σ ∪ {λ}

q → λ for every q ∈ F

Then: A ⇒∗ uB in G ⇐⇒ A u−→−→ B in M.

It follows that, L(G) = L(M).

From NFAs to Right Linear Grammars

For every NFA M there exists a right linear grammar G with

L(G) = L(M)

Construction
Let M = (Q, Σ, δ, {q0},F) be an NFA with a single starting state.

Define G = (V ,T ,S,P) with V = Q and T = Σ and S = q0.

The set P consists of the following production rules

q → αq ′ for every q ′ ∈ δ(q, α) where α ∈ Σ ∪ {λ}

q → λ for every q ∈ F

Then: A ⇒∗ uB in G ⇐⇒ A u−→−→ B in M.

It follows that, L(G) = L(M).

From NFAs to Right Linear Grammars

For every NFA M there exists a right linear grammar G with

L(G) = L(M)

Construction
Let M = (Q, Σ, δ, {q0},F) be an NFA with a single starting state.

Define G = (V ,T ,S,P) with V = Q and T = Σ and S = q0.

The set P consists of the following production rules

q → αq ′ for every q ′ ∈ δ(q, α) where α ∈ Σ ∪ {λ}

q → λ for every q ∈ F

Then: A ⇒∗ uB in G ⇐⇒ A u−→−→ B in M.

It follows that, L(G) = L(M).

From NFAs to Right Linear Grammars

For every NFA M there exists a right linear grammar G with

L(G) = L(M)

Construction
Let M = (Q, Σ, δ, {q0},F) be an NFA with a single starting state.

Define G = (V ,T ,S,P) with V = Q and T = Σ and S = q0.

The set P consists of the following production rules

q → αq ′ for every q ′ ∈ δ(q, α) where α ∈ Σ ∪ {λ}

q → λ for every q ∈ F

Then: A ⇒∗ uB in G ⇐⇒ A u−→−→ B in M.

It follows that, L(G) = L(M).

From NFAs to Right Linear Grammars

For every NFA M there exists a right linear grammar G with

L(G) = L(M)

Construction
Let M = (Q, Σ, δ, {q0},F) be an NFA with a single starting state.

Define G = (V ,T ,S,P) with V = Q and T = Σ and S = q0.

The set P consists of the following production rules

q → αq ′ for every q ′ ∈ δ(q, α) where α ∈ Σ ∪ {λ}

q → λ for every q ∈ F

Then: A ⇒∗ uB in G ⇐⇒ A u−→−→ B in M.

It follows that, L(G) = L(M).

From NFAs to Right Linear Grammars

For every NFA M there exists a right linear grammar G with

L(G) = L(M)

Construction
Let M = (Q, Σ, δ, {q0},F) be an NFA with a single starting state.

Define G = (V ,T ,S,P) with V = Q and T = Σ and S = q0.

The set P consists of the following production rules

q → αq ′ for every q ′ ∈ δ(q, α) where α ∈ Σ ∪ {λ}

q → λ for every q ∈ F

Then: A ⇒∗ uB in G ⇐⇒ A u−→−→ B in M.

It follows that, L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}). Let NFA M = (Q, Σ, δ, {S },F) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V . The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w . Hence L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}). Let NFA M = (Q, Σ, δ, {S },F) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V . The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w . Hence L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}).

Let NFA M = (Q, Σ, δ, {S },F) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V . The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w . Hence L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}). Let NFA M = (Q, Σ, δ, {S },F) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V .

The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w . Hence L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}). Let NFA M = (Q, Σ, δ, {S },F) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V . The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w . Hence L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}). Let NFA M = (Q, Σ, δ, {S },F) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V . The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w .

Hence L(G) = L(M).

From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}). Let NFA M = (Q, Σ, δ, {S },F) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V . The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w . Hence L(G) = L(M).

Exercise

Construct an NFA that accepts the language generated by

S → aT T → abcS | b

Note that T → abS | b is short for two rules:

T → abcS
T → b

Right Linear Grammars ⇐⇒ Regular Languages

Theorem
Language L is regular⇐⇒ there is a right linear grammar G with L(G) = L

Proof.
The proof consists of two directions:

(⇒) Translating NFAs to right linear grammars.

(⇐) Translate right linear grammars to NFAs.

We have already seen both constructions.

Right Linear Grammars ⇐⇒ Regular Languages

Theorem
Language L is regular⇐⇒ there is a right linear grammar G with L(G) = L

Proof.
The proof consists of two directions:

(⇒) Translating NFAs to right linear grammars.

(⇐) Translate right linear grammars to NFAs.

We have already seen both constructions.

Left Linear Grammars

Left Linear Grammars

A grammar G = (V ,T ,S,P) is left linear if all production rules
are of the form

A → Bu or A → u

with A,B ∈ V and u ∈ T ∗.

(Difference with right linear grammars highlighted in red.)

Theorem
Language L is regular⇐⇒ there is a left linear grammar G with L(G) = L

Proof.

L is regular ⇐⇒ LR is regular⇐⇒ right linear grammar for LR

⇐⇒ left linear grammar for L
(For the last step, reverse both sides of all production rules.)

Left Linear Grammars

A grammar G = (V ,T ,S,P) is left linear if all production rules
are of the form

A → Bu or A → u

with A,B ∈ V and u ∈ T ∗.

(Difference with right linear grammars highlighted in red.)

Theorem
Language L is regular⇐⇒ there is a left linear grammar G with L(G) = L

Proof.

L is regular ⇐⇒ LR is regular⇐⇒ right linear grammar for LR

⇐⇒ left linear grammar for L
(For the last step, reverse both sides of all production rules.)

Left Linear Grammars

A grammar G = (V ,T ,S,P) is left linear if all production rules
are of the form

A → Bu or A → u

with A,B ∈ V and u ∈ T ∗.

(Difference with right linear grammars highlighted in red.)

Theorem
Language L is regular⇐⇒ there is a left linear grammar G with L(G) = L

Proof.

L is regular ⇐⇒ LR is regular⇐⇒ right linear grammar for LR

⇐⇒ left linear grammar for L
(For the last step, reverse both sides of all production rules.)

Mixing Right and Left Linear Rules

Mixing right and left linear rules, the generated language is not
always regular.

Example
Let G be the grammar

S → aA
A → Sb
S → λ

Every rule of G is either right or left linear.

However, the language L(G) = {anbn | n ≥ 0} is not regular.

	Regular Grammars
	Right Linear Grammars vs Regular Languages
	Left Linear Grammars

