# Automata Theory :: (Regular) Grammars 

Jörg Endrullis

Vrije Universiteit Amsterdam

## Introduction to Grammars

A grammar defines a language.
Applications areas:

- natural language
- artificial intelligence
- syntax of programming languages


## Introduction to Grammars

A grammar defines a language.
Applications areas:

- natural language
- artificial intelligence
- syntax of programming languages


## Example

| $\langle$ sentence $\rangle$ | $\rightarrow$ 〈article $\rangle\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$ |
| ---: | :--- |
| $\langle$ article $\rangle$ | $\rightarrow$ the |
| $\langle$ article $\rangle$ | $\rightarrow$ a |
| $\langle$ noun $\rangle$ | $\rightarrow$ farmer |
| $\langle$ noun $\rangle$ | $\rightarrow$ cow |
| $\langle$ verb $\rangle$ | $\rightarrow$ milks |

With these grammar rules we can construct a $\langle$ sentence $\rangle$.

## Introduction to Grammars

$\langle$ sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．


## Introduction to Grammars

$\langle$ sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．
〈sentence〉


## Introduction to Grammars

$\langle$ sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．
$\langle$ sentence $\rangle \Rightarrow\langle$ article $\rangle\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$


## Introduction to Grammars

〈sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．
$\langle$ sentence $\rangle \Rightarrow\langle$ article $\rangle\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the $\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$


## Introduction to Grammars

$\langle$ sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．
$\langle$ sentence $\rangle \Rightarrow\langle$ article $\rangle\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the $\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer $\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$


## Introduction to Grammars

$\langle$ sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．
$\langle$ sentence $\rangle \Rightarrow\langle$ article $\rangle\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the $\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer $\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer milks $\langle$ article $\rangle\langle$ noun $\rangle$


## Introduction to Grammars

$\langle$ sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．
$\langle$ sentence $\rangle \Rightarrow\langle$ article $\rangle\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the $\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer $\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer milks $\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer milks a＜noun〉


## Introduction to Grammars

$\langle$ sentence〉 $\rightarrow$ 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 $\rightarrow$ the
$\langle$ article〉 $\rightarrow$ a
〈noun〉 $\rightarrow$ farmer
〈noun〉 $\rightarrow$ cow
〈verb〉 $\rightarrow$ milks
The farmer milks a cow is a sentence in the language．
$\langle$ sentence $\rangle \Rightarrow\langle$ article $\rangle\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the $\langle$ noun $\rangle\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer $\langle$ verb $\rangle\langle$ article $\rangle\langle$ noun $\rangle$
$\Rightarrow$ the farmer milks 〈article〉〈noun〉
$\Rightarrow$ the farmer milks a＜noun〉

$\Rightarrow$ the farmer milks a cow

## Grammars

A grammar $G=(V, T, S, P)$ consists of：
－finite set $V$ of non－terminals（or variables）
－finite set $T$ of terminals
－a start symbol $S \in V$
－finite set $P$ of production rules $x \rightarrow y$ where
$\square x \in(V \cup T)^{+}$containing at least one symbol from $V$
－$y \in(V \cup T)^{*}$

In the previous example：
－variables：〈sentence〉，〈article〉，〈noun〉，〈verb〉
－terminals：the，a，farmer，cow，milks
－starting symbol：〈sentence〉

## Grammars

A grammar $G=(V, T, S, P)$ consists of：
－finite set $V$ of non－terminals（or variables）
－finite set $T$ of terminals
－a start symbol $S \in V$
－finite set $P$ of production rules $x \rightarrow y$ where
$\square x \in(V \cup T)^{+}$containing at least one symbol from $V$
－$y \in(V \cup T)^{*}$

In the previous example：
－variables：〈sentence〉，〈article〉，〈noun〉，〈verb〉
－terminals：the，a，farmer，cow，milks
－starting symbol：〈sentence〉

A grammar is context－free if $x \in V$ for every rule $x \rightarrow y$ ．

## $B$ (ackus) $N($ aur $) F(o r m)$ is a Context-Free Grammar

The BNF (Backus Naur Form) is often used to define the syntax of programming languages. These are context-free grammars!

## Example

| $\langle\mathrm{stm}\rangle$ | $\rightarrow\langle\mathrm{var}\rangle:=\langle$ expr $\rangle$ |
| ---: | :--- |
| $\langle\mathrm{stm}\rangle$ | $\rightarrow\langle\mathrm{stm}\rangle ;\langle\mathrm{stm}\rangle$ |
| $\langle\mathrm{stm}\rangle$ | $\rightarrow$ begin $\langle\mathrm{stm}\rangle$ end |
| $\langle\mathrm{stm}\rangle$ | $\rightarrow$ if $\langle$ cond $\rangle$ then $\langle\mathrm{stm}\rangle$ else $\langle\mathrm{stm}\rangle$ |
| $\langle\mathrm{stm}\rangle$ | $\rightarrow$ while $\langle$ cond $\rangle$ do $\langle\mathrm{stm}\rangle$ |
| $\langle\mathrm{cond}\rangle$ | $\rightarrow \cdots$ |
| $\langle\mathrm{var}\rangle$ | $\rightarrow \cdots$ |
| $\langle$ expr $\rangle$ | $\rightarrow \cdots$ |
| $\cdots$ | $\rightarrow \cdots$ |

In BNF, non-terminals (variables) are indicated by $\langle$ and $\rangle$.

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
S \Rightarrow \lambda
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S
\end{aligned}
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S \Rightarrow a S b
\end{aligned}
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S \Rightarrow a S b \Rightarrow a b
\end{aligned}
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S \Rightarrow a S b \Rightarrow a b \\
& S
\end{aligned}
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S \Rightarrow a S b \Rightarrow a b \\
& S \Rightarrow a S b
\end{aligned}
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S \Rightarrow a S b \Rightarrow a b \\
& S \Rightarrow a S b \Rightarrow a a S b b
\end{aligned}
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S \Rightarrow a S b \Rightarrow a b \\
& S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b
\end{aligned}
$$

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

Example derivations:

$$
\begin{aligned}
& S \Rightarrow \lambda \\
& S \Rightarrow a S b \Rightarrow a b \\
& S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b
\end{aligned}
$$

A derivation $\Rightarrow^{*}$ is the reflexive, transitive closure of $\Rightarrow$.
Thus there is a derivation $u \Rightarrow^{*} v$ if $v$ can be obtained from $u$ by zero or more derivation steps.

## Grammar Derivations

If $x \rightarrow y$ is a production rule, then we have a derivation step

$$
u x v \Rightarrow u y v
$$

for every $u, v \in(V \cup T)^{*}$.
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow a S b
$$

$$
S \rightarrow \lambda
$$

Example derivations:

$$
\begin{array}{ll}
S \Rightarrow \lambda & S \Rightarrow^{*} \lambda \\
S \Rightarrow a S b \Rightarrow a b & S \Rightarrow^{*} a b \\
S \Rightarrow a S b \Rightarrow a a S b b \Rightarrow a a b b & S \Rightarrow^{*} a a b b
\end{array}
$$

A derivation $\Rightarrow^{*}$ is the reflexive, transitive closure of $\Rightarrow$.
Thus there is a derivation $u \Rightarrow^{*} v$ if $v$ can be obtained from $u$ by zero or more derivation steps.

## Languages Generated by Grammars

The language generated by a grammar $G=(V, T, S, P)$ is

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

The language consists of all words that

- contain only terminal letters (no variables), and
- can be derived from the start symbol


## Languages Generated by Grammars

The language generated by a grammar $G=(V, T, S, P)$ is

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

The language consists of all words that

- contain only terminal letters (no variables), and
- can be derived from the start symbol
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow \text { aSb } \quad S \rightarrow \lambda
$$

What is the language generated by $G$ ?

$$
L(G)=
$$

## Languages Generated by Grammars

The language generated by a grammar $G=(V, T, S, P)$ is

$$
L(G)=\left\{w \in T^{*} \mid S \Rightarrow^{*} w\right\}
$$

The language consists of all words that

- contain only terminal letters (no variables), and
- can be derived from the start symbol
$G=(\{S\},\{a, b\}, S, P)$, where $P$ consists of

$$
S \rightarrow \text { aSb } \quad S \rightarrow \lambda
$$

What is the language generated by $G$ ?

$$
L(G)=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

Recall that this language is not regular.

## Notational Conventions for Grammars

## Notational Conventions

When defining grammars, we use the following conventions:

- upper case letters for variables (non-terminals)
- lower case letters for terminals

■ $V \rightarrow w_{1}|\ldots| w_{n}$ is shorthand for $n$ rules

$$
\begin{gathered}
V \rightarrow w_{1} \\
\vdots \\
V \xrightarrow{\rightarrow} w_{n}
\end{gathered}
$$

Often, we only specify the production rules.

## Notational Conventions for Grammars

## Notational Conventions

When defining grammars, we use the following conventions:

- upper case letters for variables (non-terminals)
- Iower case letters for terminals
- $V \rightarrow w_{1}|\ldots| w_{n}$ is shorthand for $n$ rules

$$
\begin{gathered}
V \rightarrow w_{1} \\
\vdots \\
V \xrightarrow{\rightarrow} w_{n}
\end{gathered}
$$

Often, we only specify the production rules.

$$
\begin{aligned}
G_{1}: & S \rightarrow A b & G_{2}: & S \rightarrow a S b \\
& A \rightarrow a A b \mid \lambda & & S \rightarrow b
\end{aligned}
$$

## Notational Conventions for Grammars

## Notational Conventions

When defining grammars, we use the following conventions:

- upper case letters for variables (non-terminals)
- lower case letters for terminals
- $V \rightarrow w_{1}|\ldots| w_{n}$ is shorthand for $n$ rules

$$
\begin{gathered}
V \rightarrow w_{1} \\
\vdots \\
V \xrightarrow{\rightarrow} w_{n}
\end{gathered}
$$

Often, we only specify the production rules.

$$
\begin{aligned}
G_{1}: & S \rightarrow A b & G_{2}: & S \rightarrow a S b \\
& A \rightarrow a A b \mid \lambda & & S \rightarrow b
\end{aligned}
$$

What languages are generated by these grammars?

$$
L\left(G_{1}\right)=
$$

## Notational Conventions for Grammars

## Notational Conventions

When defining grammars, we use the following conventions:

- upper case letters for variables (non-terminals)
- lower case letters for terminals
- $V \rightarrow w_{1}|\ldots| w_{n}$ is shorthand for $n$ rules

$$
\begin{gathered}
V \rightarrow w_{1} \\
\vdots \\
V \xrightarrow{\rightarrow} w_{n}
\end{gathered}
$$

Often, we only specify the production rules.

$$
\begin{aligned}
G_{1}: & S \rightarrow A b & G_{2}: & S \rightarrow a S b \\
& A \rightarrow a A b \mid \lambda & & S \rightarrow b
\end{aligned}
$$

What languages are generated by these grammars?

$$
L\left(G_{1}\right)=\left\{a^{n} b^{n+1} \mid n \geq 0\right\}
$$

## Notational Conventions for Grammars

## Notational Conventions

When defining grammars, we use the following conventions:

- upper case letters for variables (non-terminals)
- lower case letters for terminals
- $V \rightarrow w_{1}|\ldots| w_{n}$ is shorthand for $n$ rules

$$
\begin{gathered}
V \rightarrow w_{1} \\
\vdots \\
V \xrightarrow{\rightarrow} w_{n}
\end{gathered}
$$

Often, we only specify the production rules.

$$
\begin{aligned}
G_{1}: & S \rightarrow A b & G_{2}: & S \rightarrow a S b \\
& A \rightarrow a A b \mid \lambda & & S \rightarrow b
\end{aligned}
$$

What languages are generated by these grammars?

$$
L\left(G_{1}\right)=\left\{a^{n} b^{n+1} \mid n \geq 0\right\} \quad L\left(G_{2}\right)=
$$

## Notational Conventions for Grammars

## Notational Conventions

When defining grammars, we use the following conventions:

- upper case letters for variables (non-terminals)
- Iower case letters for terminals
- $V \rightarrow w_{1}|\ldots| w_{n}$ is shorthand for $n$ rules

$$
\begin{gathered}
V \rightarrow w_{1} \\
\vdots \\
V \xrightarrow{\rightarrow} w_{n}
\end{gathered}
$$

Often, we only specify the production rules.

$$
\begin{aligned}
G_{1}: & S \rightarrow A b & G_{2}: & S \rightarrow a S b \\
& A \rightarrow a A b \mid \lambda & & S \rightarrow b
\end{aligned}
$$

What languages are generated by these grammars?

$$
L\left(G_{1}\right)=\left\{a^{n} b^{n+1} \mid n \geq 0\right\} \quad=\quad L\left(G_{2}\right)=\left\{a^{n} b^{n+1} \mid n \geq 0\right\}
$$

## Exercises (1)

Find a grammar $G$ such that

$$
L(G)=\{a, b\}^{*}\{c\}\{b, c\}^{*}
$$

## Exercises (1)

Find a grammar $G$ such that

$$
L(G)=\{a, b\}^{*}\{c\}\{b, c\}^{*}
$$

There are many possible solutions!

## Exercises (1)

Find a grammar $G$ such that

$$
L(G)=\{a, b\}^{*}\{c\}\{b, c\}^{*}
$$

There are many possible solutions!
One possible solution is:

$$
S \rightarrow X c Y
$$

## Exercises (1)

Find a grammar $G$ such that

$$
L(G)=\{a, b\}^{*}\{c\}\{b, c\}^{*}
$$

There are many possible solutions!
One possible solution is:

$$
\begin{aligned}
& S \rightarrow X c Y \\
& X \rightarrow a X|b X| \lambda
\end{aligned}
$$

## Exercises (1)

Find a grammar $G$ such that

$$
L(G)=\{a, b\}^{*}\{c\}\{b, c\}^{*}
$$

There are many possible solutions!
One possible solution is:

$$
\begin{aligned}
& S \rightarrow X c Y \\
& X \rightarrow a X|b X| \lambda \\
& Y \rightarrow b Y|c Y| \lambda
\end{aligned}
$$

## Exercises (2)

$$
\begin{aligned}
& \text { A word } w=a_{1} a_{2} \cdots a_{n} \text { is called palindrome if } w=w^{R} \text {, that is } \\
& \qquad a_{1} a_{2} \cdots a_{n}=a_{n} \cdots a_{2} a_{1}
\end{aligned}
$$

For instance hannah is a palindrome.

## Exercises (2)

A word $w=a_{1} a_{2} \cdots a_{n}$ is called palindrome if $w=w^{R}$, that is

$$
a_{1} a_{2} \cdots a_{n}=a_{n} \cdots a_{2} a_{1}
$$

For instance hannah is a palindrome.

Find a grammar $G$ that generates all palindromes over the alphabet $\Sigma=\{a, b\}$. In other words

$$
L(G)=\left\{w \in \Sigma^{*} \mid w \text { is a palindrome }\right\}
$$

## Exercises (2)

A word $w=a_{1} a_{2} \cdots a_{n}$ is called palindrome if $w=w^{R}$, that is

$$
a_{1} a_{2} \cdots a_{n}=a_{n} \cdots a_{2} a_{1}
$$

For instance hannah is a palindrome.

Find a grammar $G$ that generates all palindromes over the alphabet $\Sigma=\{a, b\}$. In other words

$$
L(G)=\left\{w \in \Sigma^{*} \mid w \text { is a palindrome }\right\}
$$

Find a grammar $G$ that generates all non-palindromes over the alphabet $\Sigma=\{a, b\}$. In other words

$$
L(G)=\left\{w \in \Sigma^{*} \mid w \text { is not a palindrome }\right\}
$$

Regular Grammars

## Right Linear Grammars

A grammar $G=(V, T, S, P)$ is right linear if all production rules are of the form

$$
A \rightarrow u B \quad \text { or } \quad A \rightarrow u
$$

with $A, B \in V$ and $u \in T^{*}$.
Moreover $G$ is strictly right linear if $|u| \leq 1$ (i.e. $u \in(T \cup\{\lambda\})$ ).

## Right Linear Grammars

A grammar $G=(V, T, S, P)$ is right linear if all production rules are of the form

$$
A \rightarrow u B \quad \text { or } \quad A \rightarrow u
$$

with $A, B \in V$ and $u \in T^{*}$.
Moreover $G$ is strictly right linear if $|u| \leq 1$ (i.e. $u \in(T \cup\{\lambda\})$ ).

Construct a right linear grammar $G$ such that

$$
L(G)=\{a, b\}^{*}\{a a\}\{b\}^{*}
$$

## Right Linear Grammars

A grammar $G=(V, T, S, P)$ is right linear if all production rules are of the form

$$
A \rightarrow u B \quad \text { or } \quad A \rightarrow u
$$

with $A, B \in V$ and $u \in T^{*}$.
Moreover $G$ is strictly right linear if $|u| \leq 1$ (i.e. $u \in(T \cup\{\lambda\})$ ).

Construct a right linear grammar $G$ such that

$$
L(G)=\{a, b\}^{*}\{a a\}\{b\}^{*}
$$

Construct a right linear grammar $G$ such that

$$
L(G)=\{a b\}\left(\{a\}^{*}\{c b\}\right)^{*}\{b\}
$$

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

## Construction

Let $G=(V, T, S, P)$ be a right linear grammar.

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

## Construction

Let $G=(V, T, S, P)$ be a right linear grammar. Assume that we have a production rule $\gamma$ of the form

$$
A \rightarrow u(B)
$$

with $|u|>1$.

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

Construction
Let $G=(V, T, S, P)$ be a right linear grammar. Assume that we have a production rule $\gamma$ of the form

$$
A \rightarrow u(B)
$$

with $|u|>1$. Then $u=a w$ for some $a \in T$ and $w \in T^{+}$.

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

Construction
Let $G=(V, T, S, P)$ be a right linear grammar. Assume that we have a production rule $\gamma$ of the form

$$
A \rightarrow u(B)
$$

with $|u|>1$. Then $u=a w$ for some $a \in T$ and $w \in T^{+}$. Let $X$ be a fresh variable $(X \notin(V \cup T))$.

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

Construction
Let $G=(V, T, S, P)$ be a right linear grammar. Assume that we have a production rule $\gamma$ of the form

$$
A \rightarrow u(B)
$$

with $|u|>1$. Then $u=a w$ for some $a \in T$ and $w \in T^{+}$. Let $X$ be a fresh variable $(X \notin(V \cup T))$.
We add $X$ to $V$ and split the rule $\gamma$ into:

$$
A \rightarrow a X \quad X \rightarrow w(B)
$$

Then $A \rightarrow a X \rightarrow a w(B)=u(B)$.

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

Construction
Let $G=(V, T, S, P)$ be a right linear grammar. Assume that we have a production rule $\gamma$ of the form

$$
A \rightarrow u(B)
$$

with $|u|>1$. Then $u=a w$ for some $a \in T$ and $w \in T^{+}$. Let $X$ be a fresh variable $(X \notin(V \cup T))$.
We add $X$ to $V$ and split the rule $\gamma$ into:

$$
A \rightarrow a X \quad X \rightarrow w(B)
$$

Then $A \rightarrow a X \rightarrow a w(B)=u(B)$. It follows $L(G)=L(H)$.

## (Strictly) Right Linear Grammars

Theorem
Let $G$ be a right linear grammar $G$. There exists a strictly right linear grammar $H$ such that $L(G)=L(H)$.

Construction
Let $G=(V, T, S, P)$ be a right linear grammar.
Assume that we have a production rule $\gamma$ of the form

$$
A \rightarrow u(B)
$$

with $|u|>1$. Then $u=a w$ for some $a \in T$ and $w \in T^{+}$. Let $X$ be a fresh variable $(X \notin(V \cup T))$.
We add $X$ to $V$ and split the rule $\gamma$ into:

$$
A \rightarrow a X \quad X \rightarrow w(B)
$$

Then $A \rightarrow a X \rightarrow a w(B)=u(B)$. It follows $L(G)=L(H)$.
Repeat splitting until $|u| \leq 1$ for all rules.

Right Linear Grammars and Regular Languages

## From NFAs to Right Linear Grammars

Consider the following NFA M


Construct a right linear grammar $G$ such that:

$$
L(M)=L(G)
$$

## From NFAs to Right Linear Grammars

For every NFA $M$ there exists a right linear grammar $G$ with

$$
L(G)=L(M)
$$

## From NFAs to Right Linear Grammars

For every NFA $M$ there exists a right linear grammar $G$ with

$$
L(G)=L(M)
$$

## Construction

Let $M=\left(Q, \Sigma, \delta,\left\{q_{0}\right\}, F\right)$ be an NFA with a single starting state.

## From NFAs to Right Linear Grammars

For every NFA $M$ there exists a right linear grammar $G$ with

$$
L(G)=L(M)
$$

## Construction

Let $M=\left(Q, \Sigma, \delta,\left\{q_{0}\right\}, F\right)$ be an NFA with a single starting state.
Define $G=(V, T, S, P)$ with $V=Q$ and $T=\Sigma$ and $S=q_{0}$.

## From NFAs to Right Linear Grammars

For every NFA $M$ there exists a right linear grammar $G$ with

$$
L(G)=L(M)
$$

## Construction

Let $M=\left(Q, \Sigma, \delta,\left\{q_{0}\right\}, F\right)$ be an NFA with a single starting state.
Define $G=(V, T, S, P)$ with $V=Q$ and $T=\Sigma$ and $S=q_{0}$.
The set $P$ consists of the following production rules

$$
\begin{array}{ll}
q \rightarrow \alpha q^{\prime} & \text { for every } q^{\prime} \in \delta(q, \alpha) \text { where } \alpha \in \Sigma \cup\{\lambda\} \\
q \rightarrow \lambda & \text { for every } q \in F
\end{array}
$$

## From NFAs to Right Linear Grammars

For every NFA $M$ there exists a right linear grammar $G$ with

$$
L(G)=L(M)
$$

## Construction

Let $M=\left(Q, \Sigma, \delta,\left\{q_{0}\right\}, F\right)$ be an NFA with a single starting state.
Define $G=(V, T, S, P)$ with $V=Q$ and $T=\Sigma$ and $S=q_{0}$.
The set $P$ consists of the following production rules

$$
\begin{array}{ll}
q \rightarrow \alpha q^{\prime} & \text { for every } q^{\prime} \in \delta(q, \alpha) \text { where } \alpha \in \Sigma \cup\{\lambda\} \\
q \rightarrow \lambda & \text { for every } q \in F
\end{array}
$$

Then: $A \Rightarrow^{*} u B$ in $G \Longleftrightarrow A \xrightarrow{u} B$ in $M$.

## From NFAs to Right Linear Grammars

For every NFA $M$ there exists a right linear grammar $G$ with

$$
L(G)=L(M)
$$

## Construction

Let $M=\left(Q, \Sigma, \delta,\left\{q_{0}\right\}, F\right)$ be an NFA with a single starting state.
Define $G=(V, T, S, P)$ with $V=Q$ and $T=\Sigma$ and $S=q_{0}$.
The set $P$ consists of the following production rules

$$
\begin{array}{ll}
q \rightarrow \alpha q^{\prime} & \text { for every } q^{\prime} \in \delta(q, \alpha) \text { where } \alpha \in \Sigma \cup\{\lambda\} \\
q \rightarrow \lambda & \text { for every } q \in F
\end{array}
$$

Then: $A \Rightarrow^{*} u B$ in $G \Longleftrightarrow A \xrightarrow{u} B$ in $M$.
It follows that, $L(G)=L(M)$.

## From Right Linear Grammars to NFAs

For every right linear grammar $G$ there exists an NFA $M$ with

$$
L(M)=L(G)
$$

## From Right Linear Grammars to NFAs

For every right linear grammar $G$ there exists an NFA $M$ with

$$
L(M)=L(G)
$$

Construction $(\Leftarrow)$
Let $G=(V, T, S, P)$ be a right linear grammar.

## From Right Linear Grammars to NFAs

For every right linear grammar $G$ there exists an NFA $M$ with

$$
L(M)=L(G)
$$

Construction $(\Leftarrow)$
Let $G=(V, T, S, P)$ be a right linear grammar.
Make $G$ to strictly right linear. Then all rules are of the form

$$
A \rightarrow u \text { or } A \rightarrow u B
$$

for $A, B \in V, u \in(T \cup\{\lambda\})$.

## From Right Linear Grammars to NFAs

For every right linear grammar $G$ there exists an NFA $M$ with

$$
L(M)=L(G)
$$

Construction $(\Leftarrow)$
Let $G=(V, T, S, P)$ be a right linear grammar.
Make $G$ to strictly right linear. Then all rules are of the form

$$
A \rightarrow u \quad \text { or } A \rightarrow u B
$$

for $A, B \in V, u \in(T \cup\{\lambda\})$. Let NFA $M=(Q, \Sigma, \delta,\{S\}, F)$ with

$$
\Sigma=T \quad Q=V \cup\{\Omega\} \quad F=\{\Omega\}
$$

where $\Omega \notin V$.

## From Right Linear Grammars to NFAs

For every right linear grammar $G$ there exists an NFA $M$ with

$$
L(M)=L(G)
$$

Construction $(\Leftarrow)$
Let $G=(V, T, S, P)$ be a right linear grammar.
Make $G$ to strictly right linear. Then all rules are of the form

$$
A \rightarrow u \quad \text { or } A \rightarrow u B
$$

for $A, B \in V, u \in(T \cup\{\lambda\})$. Let NFA $M=(Q, \Sigma, \delta,\{S\}, F)$ with

$$
\Sigma=T \quad Q=V \cup\{\Omega\} \quad F=\{\Omega\}
$$

where $\Omega \notin V$. The transitions $\delta$ are given by

$$
\begin{array}{ll}
A \xrightarrow{u} B & \text { for every } A \rightarrow u B \text { in } G \\
A \xrightarrow{u} \Omega & \text { for every } A \rightarrow u \text { in } G
\end{array}
$$

## From Right Linear Grammars to NFAs

For every right linear grammar $G$ there exists an NFA $M$ with

$$
L(M)=L(G)
$$

Construction $(\Leftarrow)$
Let $G=(V, T, S, P)$ be a right linear grammar.
Make $G$ to strictly right linear. Then all rules are of the form

$$
A \rightarrow u \quad \text { or } A \rightarrow u B
$$

for $A, B \in V, u \in(T \cup\{\lambda\})$. Let NFA $M=(Q, \Sigma, \delta,\{S\}, F)$ with

$$
\Sigma=T \quad Q=V \cup\{\Omega\} \quad F=\{\Omega\}
$$

where $\Omega \notin V$. The transitions $\delta$ are given by

$$
\begin{array}{ll}
A \xrightarrow{u} B & \text { for every } A \rightarrow u B \text { in } G \\
A \xrightarrow{u} \Omega & \text { for every } A \rightarrow u \text { in } G
\end{array}
$$

Then $S \Rightarrow^{*} w \in T^{*} \Longleftrightarrow M$ accepts $w$.

## From Right Linear Grammars to NFAs

For every right linear grammar $G$ there exists an NFA $M$ with

$$
L(M)=L(G)
$$

## Construction $(\Leftarrow)$

Let $G=(V, T, S, P)$ be a right linear grammar.
Make $G$ to strictly right linear. Then all rules are of the form

$$
A \rightarrow u \quad \text { or } A \rightarrow u B
$$

for $A, B \in V, u \in(T \cup\{\lambda\})$. Let NFA $M=(Q, \Sigma, \delta,\{S\}, F)$ with

$$
\Sigma=T \quad Q=V \cup\{\Omega\} \quad F=\{\Omega\}
$$

where $\Omega \notin V$. The transitions $\delta$ are given by

$$
\begin{array}{ll}
A \xrightarrow{u} B & \text { for every } A \rightarrow u B \text { in } G \\
A \xrightarrow{u} \Omega & \text { for every } A \rightarrow u \text { in } G
\end{array}
$$

Then $S \Rightarrow^{*} w \in T^{*} \Longleftrightarrow M$ accepts $w$. Hence $L(G)=L(M)$.

## Exercise

Construct an NFA that accepts the language generated by

$$
S \rightarrow a T \quad T \rightarrow a b c S \mid b
$$

Note that $T \rightarrow a b S \mid b$ is short for two rules:

$$
\begin{aligned}
& T \rightarrow a b c S \\
& T \rightarrow b
\end{aligned}
$$

## Right Linear Grammars $\Longleftrightarrow$ Regular Languages

Theorem
Language $L$ is regular
$\Longleftrightarrow$ there is a right linear grammar $G$ with $L(G)=L$

## Right Linear Grammars $\Longleftrightarrow$ Regular Languages

Theorem
Language $L$ is regular $\Longleftrightarrow$ there is a right linear grammar $G$ with $L(G)=L$

## Proof.

The proof consists of two directions:

- $(\Rightarrow)$ Translating NFAs to right linear grammars.
- ( $\Leftarrow$ ) Translate right linear grammars to NFAs.

We have already seen both constructions.

Left Linear Grammars

## Left Linear Grammars

A grammar $G=(V, T, S, P)$ is left linear if all production rules are of the form

$$
A \rightarrow B u \quad \text { or } \quad A \rightarrow u
$$

with $A, B \in V$ and $u \in T^{*}$.
(Difference with right linear grammars highlighted in red.)

## Left Linear Grammars

A grammar $G=(V, T, S, P)$ is left linear if all production rules are of the form

$$
A \rightarrow B u \quad \text { or } \quad A \rightarrow u
$$

with $A, B \in V$ and $u \in T^{*}$.
(Difference with right linear grammars highlighted in red.)
Theorem
Language $L$ is regular
$\Longleftrightarrow$ there is a left linear grammar $G$ with $L(G)=L$

## Left Linear Grammars

A grammar $G=(V, T, S, P)$ is left linear if all production rules are of the form

$$
A \rightarrow B u \quad \text { or } \quad A \rightarrow u
$$

with $A, B \in V$ and $u \in T^{*}$.
(Difference with right linear grammars highlighted in red.)
Theorem
Language $L$ is regular
$\Longleftrightarrow$ there is a left linear grammar $G$ with $L(G)=L$

## Proof.

$L$ is regular $\Longleftrightarrow L^{R}$ is regular $\Longleftrightarrow$ right linear grammar for $L^{R}$ $\Longleftrightarrow$ left linear grammar for $L$
(For the last step, reverse both sides of all production rules.)

## Mixing Right and Left Linear Rules

Mixing right and left linear rules, the generated language is not always regular.

## Example

Let $G$ be the grammar

$$
\begin{aligned}
& S \rightarrow a A \\
& A \rightarrow S b \\
& S \rightarrow \lambda
\end{aligned}
$$

Every rule of $G$ is either right or left linear.
However, the language $L(G)=\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is not regular.

