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Introduction to Grammars

A grammar defines a language.

Applications areas:
natural language
artificial intelligence
syntax of programming languages

Example

〈sentence〉 → 〈article〉 〈noun〉 〈verb〉 〈article〉 〈noun〉
〈article〉 → the
〈article〉 → a
〈noun〉 → farmer
〈noun〉 → cow
〈verb〉 → milks

With these grammar rules we can construct a 〈sentence〉.
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Grammars

A grammar G = (V ,T ,S,P) consists of:
finite set V of non-terminals (or variables)
finite set T of terminals
a start symbol S ∈ V
finite set P of production rules x → y where

x ∈ (V ∪ T )+ containing at least one symbol from V

y ∈ (V ∪ T )∗

In the previous example:
variables: 〈sentence〉, 〈article〉, 〈noun〉, 〈verb〉

terminals: the, a, farmer, cow, milks

starting symbol: 〈sentence〉

A grammar is context-free if x ∈ V for every rule x → y .
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B(ackus) N(aur) F(orm) is a Context-Free Grammar

The BNF (Backus Naur Form) is often used to define the syntax
of programming languages. These are context-free grammars!

Example

〈stm〉 → 〈var〉 := 〈expr〉
〈stm〉 → 〈stm〉 ; 〈stm〉
〈stm〉 → begin 〈stm〉 end
〈stm〉 → if 〈cond〉 then 〈stm〉 else 〈stm〉
〈stm〉 → while 〈cond〉 do 〈stm〉
〈cond〉 → · · ·
〈var〉 → · · ·
〈expr〉 → · · ·
· · · → · · ·

In BNF, non-terminals (variables) are indicated by 〈 and 〉.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S

⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S

⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb

⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S

⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb

⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb ⇒ aaSbb

⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ

S ⇒∗ λ

S ⇒ aSb ⇒ ab

S ⇒∗ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Grammar Derivations

If x → y is a production rule, then we have a derivation step

uxv ⇒ uyv

for every u, v ∈ (V ∪ T )∗.

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

Example derivations:

S ⇒ λ S ⇒∗ λ
S ⇒ aSb ⇒ ab S ⇒∗ ab
S ⇒ aSb ⇒ aaSbb ⇒ aabb S ⇒∗ aabb

A derivation ⇒∗ is the reflexive, transitive closure of ⇒.

Thus there is a derivation u ⇒∗ v if v can be obtained from u
by zero or more derivation steps.



Languages Generated by Grammars

The language generated by a grammar G = (V ,T ,S,P) is

L(G) = {w ∈ T ∗ | S ⇒∗ w }

The language consists of all words that

contain only terminal letters (no variables), and

can be derived from the start symbol

G = ({S}, {a,b},S,P), where P consists of

S → aSb S → λ

What is the language generated by G?

L(G) =

{anbn | n ≥ 0 }

Recall that this language is not regular.
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Notational Conventions for Grammars

Notational Conventions
When defining grammars, we use the following conventions:

upper case letters for variables (non-terminals)

lower case letters for terminals

V → w1 | . . . | wn is shorthand for n rules

V → w1...
V → wn

Often, we only specify the production rules.

G1 : S → Ab G2 : S → aSb
A → aAb | λ S → b

What languages are generated by these grammars?

L(G1) =

{anbn+1 | n ≥ 0} = L(G2) = {anbn+1 | n ≥ 0}
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Exercises (1)

Find a grammar G such that

L(G) = {a,b}∗ {c} {b, c}∗

There are many possible solutions!

One possible solution is:

S → XcY

X → aX | bX | λ

Y → bY | cY | λ
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Exercises (2)

A word w = a1a2 · · · an is called palindrome if w = wR, that is

a1a2 · · · an = an · · · a2a1

For instance hannah is a palindrome.

Find a grammar G that generates all palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is a palindrome}

Find a grammar G that generates all non-palindromes over the
alphabet Σ = {a,b}. In other words

L(G) = {w ∈ Σ∗ | w is not a palindrome }
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Regular Grammars



Right Linear Grammars

A grammar G = (V ,T ,S,P) is right linear if all production
rules are of the form

A → uB or A → u

with A,B ∈ V and u ∈ T ∗.
Moreover G is strictly right linear if |u| ≤ 1 (i.e. u ∈ (T ∪ {λ})).

Construct a right linear grammar G such that

L(G) = {a,b}∗ {aa} {b}∗

Construct a right linear grammar G such that

L(G) = {ab}
(
{a}∗ {cb}

)∗
{b}
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(Strictly) Right Linear Grammars

Theorem
Let G be a right linear grammar G. There exists a strictly right
linear grammar H such that L(G) = L(H).

Construction
Let G = (V ,T ,S,P) be a right linear grammar.
Assume that we have a production rule γ of the form

A → u(B)

with |u| > 1. Then u = aw for some a ∈ T and w ∈ T+.
Let X be a fresh variable (X 6∈ (V ∪ T )).
We add X to V and split the rule γ into:

A → aX X → w(B)

Then A → aX → aw(B) = u(B). It follows L(G) = L(H).
Repeat splitting until |u| ≤ 1 for all rules.
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From NFAs to Right Linear Grammars

Consider the following NFA M

q0 q1 q2

a

b

λ c

Construct a right linear grammar G such that:

L(M) = L(G)



From NFAs to Right Linear Grammars

For every NFA M there exists a right linear grammar G with

L(G) = L(M)

Construction
Let M = (Q, Σ, δ, {q0},F ) be an NFA with a single starting state.

Define G = (V ,T ,S,P) with V = Q and T = Σ and S = q0.

The set P consists of the following production rules

q → αq ′ for every q ′ ∈ δ(q, α) where α ∈ Σ ∪ {λ}

q → λ for every q ∈ F

Then: A ⇒∗ uB in G ⇐⇒ A u−→−→ B in M.

It follows that, L(G) = L(M).
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From Right Linear Grammars to NFAs

For every right linear grammar G there exists an NFA M with

L(M) = L(G)

Construction (⇐)
Let G = (V ,T ,S,P) be a right linear grammar.

Make G to strictly right linear. Then all rules are of the form

A → u or A → uB

for A,B ∈ V , u ∈ (T ∪ {λ}). Let NFA M = (Q, Σ, δ, {S },F ) with

Σ = T Q = V ∪ {Ω } F = {Ω }

where Ω 6∈ V . The transitions δ are given by

A u→ B for every A → uB in G
A u→ Ω for every A → u in G

Then S ⇒∗ w ∈ T ∗ ⇐⇒ M accepts w . Hence L(G) = L(M).
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Exercise

Construct an NFA that accepts the language generated by

S → aT T → abcS | b

Note that T → abS | b is short for two rules:

T → abcS
T → b



Right Linear Grammars ⇐⇒ Regular Languages

Theorem
Language L is regular⇐⇒ there is a right linear grammar G with L(G) = L

Proof.
The proof consists of two directions:

(⇒) Translating NFAs to right linear grammars.

(⇐) Translate right linear grammars to NFAs.

We have already seen both constructions.
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Left Linear Grammars

A grammar G = (V ,T ,S,P) is left linear if all production rules
are of the form

A → Bu or A → u

with A,B ∈ V and u ∈ T ∗.

(Difference with right linear grammars highlighted in red.)

Theorem
Language L is regular⇐⇒ there is a left linear grammar G with L(G) = L

Proof.

L is regular ⇐⇒ LR is regular⇐⇒ right linear grammar for LR

⇐⇒ left linear grammar for L
(For the last step, reverse both sides of all production rules.)
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Mixing Right and Left Linear Rules

Mixing right and left linear rules, the generated language is not
always regular.

Example
Let G be the grammar

S → aA
A → Sb
S → λ

Every rule of G is either right or left linear.

However, the language L(G) = {anbn | n ≥ 0} is not regular.
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