57/80
\begin{frame}{(Strictly) Right Linear Grammars}
    
  \begin{block}{Theorem}
    Let $G$ be a right linear grammar $G$.
    There exists a \emph{strictly} right linear grammar $H$ such that $L(G) = L(H)$.
  \end{block}
  \pause
    
  \begin{construction}
    Let $G=(V,T,S,P)$ be a right linear grammar.
    \pause\smallskip
    
    Assume that we have a production rule $\gamma$ of the form
    \begin{talign}
      \alert{A \to u(B)}
    \end{talign}
    %with $A,B \in V$ and $u \in T^*$ 
    with $\alert{|u| > 1}$.
    \pause
    Then \alert{$u = a w$} for some $a \in T$ and $w \in T^+$.
    \pause\smallskip
    
    Let \alert{$X$} be a \alert{fresh} variable ($X \not\in (V\cup T)$).
    \pause\smallskip

    We add $X$ to $V$ and split the rule $\gamma$ into:
    \begin{talign}
      \alert{A \to aX} && \alert{X \to w(B)}
    \end{talign}
    Then $A \to aX \to aw(B) = u(B)$. \pause It follows $L(G) = L(H)$.
    \pause\smallskip
    
    Repeat splitting until $|u| \le 1$ for all rules.    
  \end{construction}
\end{frame}