Automata Theory :: Finite Automata

Jörg Endrullis

Vrije Universiteit Amsterdam

Deterministic Finite Automata

Deterministic Finite Automata (DFAs)

A deterministic finite automaton, short DFA, consists of:

- a finite set Q of states
- a finite input alphabet Σ
- a transition function $\delta: Q \times \Sigma \rightarrow Q$
- a starting state $q_{0} \in Q$
- a set $F \subseteq Q$ of final states

Example DFA

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $Q=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, F=\left\{q_{0}\right\}$,

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=q_{0} & \delta\left(q_{1}, a\right)=q_{1} \\
\delta\left(q_{0}, b\right)=q_{1} & \delta\left(q_{1}, b\right)=q_{0}
\end{array}
$$

Understanding the transition function $\delta: Q \times \Sigma \rightarrow Q$

If the automaton in state q reads the symbol a, then the resulting state is $\delta(q, a)$.

DFAs Reading Words

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
A configuration of M is a pair (q, w) with $q \in Q$ and $w \in \Sigma^{*}$.
So (q, w) means the automaton is in state q and reads word w.
The step relation \vdash of M is defined on configurations by

$$
(q, a w) \vdash\left(q^{\prime}, w\right) \quad \text { if } \delta(q, a)=q^{\prime}
$$

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $Q=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, F=\left\{q_{0}\right\}$,

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=q_{0} & \delta\left(q_{1}, a\right)=q_{1} \\
\delta\left(q_{0}, b\right)=q_{1} & \delta\left(q_{1}, b\right)=q_{0}
\end{array}
$$

Then $\left(q_{0}, a b b a\right) \vdash\left(q_{0}, b b a\right) \vdash\left(q_{1}, b a\right) \vdash\left(q_{0}, a\right) \vdash\left(q_{0}, \lambda\right)$.
We define \vdash^{*} as the reflexive transitive closure of \vdash.
Continuing the above example, we have $\left(q_{0}, a b b a\right) \vdash^{*}\left(q_{0}, \lambda\right)$.

Transition Function in Table Notation

Example DFA

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $Q=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, F=\left\{q_{0}\right\}$,

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=q_{0} & \delta\left(q_{1}, a\right)=q_{1} \\
\delta\left(q_{0}, b\right)=q_{1} & \delta\left(q_{1}, b\right)=q_{0}
\end{array}
$$

Hint: transition function δ can be written in the form of a table:

$$
\begin{array}{l|ll}
\delta & q_{0} & q_{1} \\
\hline a & q_{0} & q_{1} \\
b & q_{1} & q_{0}
\end{array}
$$

DFAs as Transition Graphs

A DFA can be visualised as a transition graph, consisting of:

- states are the nodes of the graph

■ starting state indicated by an extra incoming arrow

- final states indicated by double circle
- arrows with labels from $\Sigma: q \xrightarrow{a} q^{\prime}$ if $\delta(q, a)=q^{\prime}$

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $Q=\left\{q_{0}, q_{1}\right\}, \Sigma=\{a, b\}, F=\left\{q_{0}\right\}$,

$$
\begin{array}{ll}
\delta\left(q_{0}, a\right)=q_{0} & \delta\left(q_{1}, a\right)=q_{1} \\
\delta\left(q_{0}, b\right)=q_{1} & \delta\left(q_{1}, b\right)=q_{0}
\end{array}
$$

is visualised as the transition graph

Exercise

An arrow with label a, b is shorthand for two arrows: one with label a and one with label b.

What is this DFA?

- states $Q=\left\{z_{0}, z_{1}, z_{2}\right\}$
- alphabet $\Sigma=\{a, b\}$
- transition function $\delta: Q \times \Sigma \rightarrow Q$:

δ	z_{0}	z_{1}	z_{2}
a	z_{1}	z_{2}	z_{1}
b	z_{2}	z_{2}	z_{0}

- starting state z_{0}
\square final states $F=\left\{z_{0}, z_{1}\right\}$

Paths in DFAs

Let $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA.
For a word $w=a_{1} \cdots a_{n}, n \geq 0$, we write

$$
q_{0} \xrightarrow{w} q_{n}
$$

if there are states q_{1}, \ldots, q_{n-1} such that

$$
q_{0} \xrightarrow{a_{1}} q_{1} \quad q_{1} \xrightarrow{a_{2}} q_{2} \quad \ldots \quad q_{n-1} \xrightarrow{a_{n}} q_{n}
$$

Theorem: $\quad q \xrightarrow{w} q^{\prime} \Longleftrightarrow(q, w) \vdash^{*}\left(q^{\prime}, \lambda\right)$.

Regular Languages

A DFA defines (accepts) a language!
The language accepted by DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ is

$$
\begin{aligned}
L(M) & =\left\{w \in \Sigma^{*} \mid\left(q_{0}, w\right) \vdash^{*}(q, \lambda) \text { with } q \in F\right\} \\
& =\left\{w \in \Sigma^{*} \mid q_{0} \xrightarrow{w} q \text { with } q \in F\right\}
\end{aligned}
$$

We have

$$
\left(q_{0}, a b b a\right) \vdash\left(q_{0}, b b a\right) \vdash\left(q_{1}, b a\right) \vdash\left(q_{0}, a\right) \vdash\left(q_{0}, \lambda\right)
$$

The word $a b b a$ is accepted by M, that is, $a b b a \in L(M)$.
A language L is regular if there exists a DFA M with $L(M)=L$.

Exercise (1)

Let M be the following DFA:

Describe the language accepted by M.

Answer:

$L(M)$ consists of all words over the alphabet $\{a, b\}$ that contain an even number of b 's.

Exercise (2)

Show that the following language is regular:
$\{\lambda\}$
Construct a deterministic finite automaton for the language.

Exercise (3)

Show that the following language is regular:

$$
\left\{a^{n} b \mid n \geq 0\right\}
$$

Construct a deterministic finite automaton for the language.

Exercise (4)

Show that the following language is regular:

$$
\left\{a^{2 n+1} \mid n \geq 0\right\} \cup\left\{b^{2 n} \mid n \geq 0\right\}
$$

Construct a deterministic finite automaton for the language.

DFAs are Deterministic

Recall that δ is a function from $Q \times \Sigma$ to Q.
DFAs are deterministic:
For every state $q \in Q$ and every symbol $a \in \Sigma$, the state q has precisely one outgoing arrow with label a.

Hence, for every input word, there is precisely one path from the starting state through the transition graph.

The following picture shows the path for aaba:

Exercise (5)

Construct deterministic finite automata for the languages:

$$
\left\{w \in\{a, b\}^{*} \mid w \text { contains the subword } b a b\right\}
$$

and

$$
\left\{w \in\{a, b\}^{*} \mid w \text { does not contain the subword } b a b\right\}
$$

Regular Languages: Complement

Theorem

If L is a regular language, then \bar{L} is also regular.

Proof.

Let L be regular.
Then there exists a DFA $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ with $L(M)=L$.
Then $N=\left(Q, \Sigma, \delta, q_{0}, Q \backslash F\right)$ is a DFA with $L(N)=\bar{L}$.
Here it is important that for every input word w :

- There is precisely one path starting at q_{0} labelled with w.
- There is precisely one state q with $q_{0} \xrightarrow{w} q$. Thus

$$
\begin{aligned}
& w \in L \Longleftrightarrow w \in L(M) \Longleftrightarrow q \in F \\
& w \in \bar{L} \Longleftrightarrow w \in \overline{L(M)} \Longleftrightarrow q \in(Q \backslash F) \Longleftrightarrow w \in L(N)
\end{aligned}
$$

Regular Languages: Union

Theorem

If L_{1} and L_{2} are regular, then $L_{1} \cup L_{2}$ is regular.

Construction (Product)

There exists a DFAs

$$
M_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{0,1}, F_{1}\right) \quad M_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{0,2}, F_{2}\right)
$$

such that $L\left(M_{1}\right)=L_{1}$ and $L\left(M_{2}\right)=L_{2}$.
Idea: We run M_{1} and M_{2} in parallel.
We define a DFA $N=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where

- $Q=Q_{1} \times Q_{2}=\left\{\left(q_{1}, q_{2}\right) \mid q_{1} \in Q_{1}, q_{2} \in Q_{2}\right\}$
- $\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)$
- $q_{0}=\left(q_{0,1}, q_{0,2}\right)$
- $F=\left\{\left(q_{1}, q_{2}\right) \in Q \mid q_{1} \in F_{1}\right.$ or $\left.q_{2} \in F_{2}\right\}$

Then it follows that $L(N)=L\left(M_{1}\right) \cup L\left(M_{2}\right)=L_{1} \cup L_{2}$.

Regular Languages: Intersection, Difference

Question

Change the product construction to show that

- $L_{1} \cap L_{2}$ is regular, and
- $L_{1} \backslash L_{2}$ is regular ?

Answer: it suffices to change the definition of the final states

- for $L_{1} \cup L_{2}: F=\left\{\left(q_{1}, q_{2}\right) \in Q \mid q_{1} \in F_{1}\right.$ or $\left.q_{2} \in F_{2}\right\}$
\square for $L_{1} \cap L_{2}: F=\left\{\left(q_{1}, q_{2}\right) \in Q \mid q_{1} \in F_{1}\right.$ and $\left.q_{2} \in F_{2}\right\}$
■ for $L_{1} \backslash L_{2}: F=\left\{\left(q_{1}, q_{2}\right) \in Q \mid q_{1} \in F_{1}\right.$ and $\left.q_{2} \notin F_{2}\right\}$

Theorem

If L_{1} and L_{2} are regular, then $L_{1} \cap L_{2}$ is regular.

Theorem

If L_{1} and L_{2} are regular, then $L_{1} \backslash L_{2}$ is regular.

Exercise

Question

Is the following language regular?

$$
\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

This language is not regular!
Intuition: a DFA has only a finite memory (the states).
We will later prove this using the pumping lemma.

Finite Languages are Regular

Theorem

Every finite language L regular.

Construction

Let N be the length of the longest word in L.
Define the DFA $M=\left(Q, \Sigma, \delta, q_{\lambda}, F\right)$ by

- $Q=\left\{q_{w}\left|w \in \Sigma^{*},|w| \leq N\right\} \cup\left\{q_{\perp}\right\}\right.$
- $F=\left\{q_{w} \mid w \in L\right\}$
- the transition function δ is defined by

$$
\delta\left(q_{w}, a\right)=\left\{\begin{array}{ll}
q_{w a} & \text { if }|w a| \leq N, \\
q_{\perp} & \text { if }|w a|>N
\end{array} \quad \delta\left(q_{\perp}, a\right)=q_{\perp}\right.
$$

for every $w \in \Sigma^{*}$ with $|w| \leq N$ and $a \in \Sigma$

Nondeterministic Finite Automata

Nondeterministic Finite Automata

NFAs are defined like DFAs, except that NFAs allow for:
■ Multiple starting states.

- Any number of outgoing arrows with the same label.
- Empty steps: arrows labelled λ (do not consume input).

Note that:

- both q_{0} and q_{2} are starting states
- the state q_{1} has two outgoing arrows with label b
- there is an empty step from q_{0} to q_{1}

Nondeterministic Finite Automata

A nondeterministic finite automaton, short NFA, consists of:

- a finite set Q of states
- a finite input alphabet Σ
- a transition function $\delta: Q \times(\Sigma \cup\{\lambda\}) \rightarrow 2^{Q}$
- a set $S \subseteq Q$ of starting states
- a set $F \subseteq Q$ of final states

Here 2^{Q} is the set of all subsets of $Q: 2^{Q}=\{X \mid X \subseteq Q\}$.
The NFA on the preceding slide is $M=(Q, \Sigma, \delta, S, F)$ where

$$
\begin{aligned}
& Q=\left\{q_{0}, q_{1}, q_{2}\right\} \\
& \Sigma=\{a, b\} \\
& S=\left\{q_{0}, q_{2}\right\} \\
& F=\left\{q_{1}\right\}
\end{aligned}
$$

δ	q_{0}	q_{1}	q_{2}
a	$\left\{q_{1}\right\}$	\varnothing	$\left\{q_{0}\right\}$
b	\varnothing	$\left\{q_{1}, q_{2}\right\}$	\varnothing
λ	$\left\{q_{1}\right\}$	\varnothing	\varnothing

NFAs Reading Words

Let $M=(Q, \Sigma, \delta, S, F)$ be a NFA.
The step relation \vdash of M is defined on configurations by

$$
(q, \alpha w) \vdash\left(q^{\prime}, w\right) \quad \text { if } q^{\prime} \in \delta(q, \alpha) \text { with } \alpha \in \Sigma \cup\{\lambda\}
$$

Note that if $\alpha=\lambda$, then

- the state changes (q to q^{\prime}), but
- the input word stays the same $(\lambda w=w)$.

$$
\begin{aligned}
\left(q_{0}, a b b a b\right) & \vdash\left(q_{1}, b b a b\right) \vdash\left(q_{1}, b a b\right) \vdash\left(q_{2}, a b\right) \\
& \vdash\left(q_{0}, b\right) \vdash\left(q_{1}, b\right) \vdash\left(q_{1}, \lambda\right)
\end{aligned}
$$

Paths in NFAs

Let $M=(Q, \Sigma, \delta, S, F)$ be a NFA.
For a word w, we write

$$
q \xrightarrow{w} q^{\prime}
$$

if $w=\alpha_{1} \cdots \alpha_{n}$ for some $\alpha_{1}, \ldots, \alpha_{n} \in(\Sigma \cup\{\lambda\})$ and there are states q_{1}, \ldots, q_{n-1} such that

$$
q^{\alpha_{1}} q_{1} \quad q_{1} \xrightarrow{\alpha_{2}} q_{2} \quad q_{2} \xrightarrow{\alpha_{3}} q_{3} \quad \ldots \quad q_{n-1} \xrightarrow{\alpha_{n}} q^{\prime}
$$

$$
\begin{array}{ll}
q_{0} \xrightarrow{\lambda} q_{0} & q_{1} \xrightarrow{\text { ba }} q_{0} \\
q_{0} \xrightarrow{\lambda} q_{1} & q_{1} \frac{b a}{\longrightarrow} q_{1} \\
q_{1} \xrightarrow{b} q_{1} & q_{\xrightarrow{\text { abbab }} q_{1}} \begin{array}{c}
\\
q_{1} \xrightarrow{b} q_{2}
\end{array} \\
q_{0} \xrightarrow{\text { abbab }} q_{2}
\end{array}
$$

Theorem: $\quad q \xrightarrow{w} q^{\prime} \Longleftrightarrow(q, w) \vdash^{*}\left(q^{\prime}, \lambda\right)$.

NFAs Accepting Languages

The language accepted by NFA $M=(Q, \Sigma, \delta, S, F)$ is

$$
\begin{aligned}
L(M) & =\left\{w \in \Sigma^{*} \mid\left(q_{0}, w\right) \vdash^{*}(q, \lambda) \text { with } q_{0} \in S, q \in F\right\} \\
& =\left\{w \in \Sigma^{*} \mid q_{0} \xrightarrow{w} q \text { with } q_{0} \in S, q \in F\right\}
\end{aligned}
$$

Paths are not unique! Paths for input word $a b$:

$$
\begin{array}{ll}
\left(q_{0}, a b\right) \vdash\left(q_{1}, b\right) \vdash\left(q_{1}, \lambda\right) & \text { (ends in accepting state) } \\
\left(q_{0}, a b\right) \vdash\left(q_{1}, b\right) \vdash\left(q_{2}, \lambda\right) & \\
\left(q_{2}, a b\right) \vdash\left(q_{0}, b\right) \vdash\left(q_{1}, b\right) \vdash\left(q_{1}, \lambda\right) & \text { (ends in accepting state) } \\
\left(q_{2}, a b\right) \vdash\left(q_{0}, b\right) \vdash\left(q_{1}, b\right) \vdash\left(q_{2}, \lambda\right) &
\end{array}
$$

One accepting path suffices! So $a b$ is accepted.

NFAs with a Single Starting State

For every NFA M there is an NFA N such that $L(M)=L(N)$ and N has a single starting state.

Construction

Let $N=(Q, \Sigma, \delta, S, F)$ be an NFA.
Define M the be obtained from N as follows

- add a fresh state q_{0},
- add transitions $q_{0} \xrightarrow{\lambda} q$ for every $q \in S$, and
- make q_{0} the only starting state of M.

Then M has a single starting state and $L(N)=L(M)$.

Convention

We denote NFAs $(Q, \Sigma, \delta, S, F)$ with a single starting state $S=\left\{q_{0}\right\}$ by $\left(Q, \Sigma, \delta, q_{0}, F\right)$.

DFAs and NFAs are Equally Expressive

Theorem

A language L is accepted by a NFA $\Longleftrightarrow L$ is regular.
Construction (Powerset)
Let $M=(Q, \Sigma, \delta, S, F)$ be a NFA.
Idea: state of DFA $=$ set of all states the NFA can be in
We construct a DFA $N=\left(Q^{\prime}, \Sigma, \delta^{\prime}, q_{0}^{\prime}, F^{\prime}\right)$ where

$$
\begin{aligned}
Q^{\prime} & =2^{Q}=\{X \mid X \subseteq Q\} \\
\delta^{\prime}(X, a) & =\left\{q^{\prime} \in Q \mid q \xrightarrow{a} q^{\prime} \text { for some } q \in X\right\} \\
q_{0}^{\prime} & =\left\{q^{\prime} \in Q \mid q \xrightarrow{\lambda} q^{\prime} \text { for some } q \in S\right\} \\
F^{\prime} & =\{X \subseteq Q \mid X \cap F \neq \varnothing\}
\end{aligned}
$$

For every $w \in \Sigma^{*}$ and $X \subseteq Q$ it holds that

$$
X \xrightarrow{w} X^{\prime} \text { in } N \quad \Longleftrightarrow X^{\prime}=\left\{q^{\prime} \mid q \in X, q \xrightarrow{w} q^{\prime} \text { in } M\right\}
$$

From this property it follows that $L(N)=L(M)$.

Exercise

Given is the following NFA:

Construct a DFA that accepts the same language.

Regular Languages: Reversal

Theorem

If L is regular, then its reverse L^{R} is regular.

Construction

Let L be a regular language.
Then there is an NFA $M=(Q, \Sigma, \delta, S, F)$ with $L(M)=L$.
Let N be the NFA obtained from M by

- reversing all arrows (transitions),
- exchanging starting states S and final states F.

Then we have

$$
q \xrightarrow{w} q^{\prime} \text { in } M \quad \Longleftrightarrow \quad q^{\prime} \xrightarrow{w^{R}} q \text { in } N
$$

Since starting and final states are swapped, it follows that

$$
w \in L(M) \Longleftrightarrow w^{R} \in L(N)
$$

Exercise

Given is the following NFA:

Construct an NFA that accepts the reverse language:

