
Automata Theory :: Finite Automata

Jörg Endrullis

Vrije Universiteit Amsterdam

Deterministic Finite Automata

Deterministic Finite Automata (DFAs)

A deterministic finite automaton, short DFA, consists of:
a finite set Q of states
a finite input alphabet Σ
a transition function δ : Q × Σ→ Q
a starting state q0 ∈ Q
a set F ⊆ Q of final states

Example DFA
Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Understanding the transition function δ : Q × Σ→ Q
If the automaton in state q reads the symbol a,
then the resulting state is δ(q,a).

Deterministic Finite Automata (DFAs)

A deterministic finite automaton, short DFA, consists of:
a finite set Q of states
a finite input alphabet Σ
a transition function δ : Q × Σ→ Q
a starting state q0 ∈ Q
a set F ⊆ Q of final states

Example DFA
Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Understanding the transition function δ : Q × Σ→ Q
If the automaton in state q reads the symbol a,
then the resulting state is δ(q,a).

Deterministic Finite Automata (DFAs)

A deterministic finite automaton, short DFA, consists of:
a finite set Q of states
a finite input alphabet Σ
a transition function δ : Q × Σ→ Q
a starting state q0 ∈ Q
a set F ⊆ Q of final states

Example DFA
Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Understanding the transition function δ : Q × Σ→ Q
If the automaton in state q reads the symbol a,
then the resulting state is δ(q,a).

DFAs Reading Words

Let M = (Q, Σ, δ, q0,F) be a DFA.

A configuration of M is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

So (q,w) means the automaton is in state q and reads word w .

The step relation ` of M is defined on configurations by

(q,aw) ` (q ′,w) if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Then (q0,abba) `

(q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ).

We define `∗ as the reflexive transitive closure of `.

Continuing the above example, we have (q0,abba) `∗ (q0, λ).

DFAs Reading Words

Let M = (Q, Σ, δ, q0,F) be a DFA.

A configuration of M is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

So (q,w) means the automaton is in state q and reads word w .

The step relation ` of M is defined on configurations by

(q,aw) ` (q ′,w) if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Then (q0,abba) `

(q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ).

We define `∗ as the reflexive transitive closure of `.

Continuing the above example, we have (q0,abba) `∗ (q0, λ).

DFAs Reading Words

Let M = (Q, Σ, δ, q0,F) be a DFA.

A configuration of M is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

So (q,w) means the automaton is in state q and reads word w .

The step relation ` of M is defined on configurations by

(q,aw) ` (q ′,w) if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Then (q0,abba) ` (q0,bba) `

(q1,ba) ` (q0,a) ` (q0, λ).

We define `∗ as the reflexive transitive closure of `.

Continuing the above example, we have (q0,abba) `∗ (q0, λ).

DFAs Reading Words

Let M = (Q, Σ, δ, q0,F) be a DFA.

A configuration of M is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

So (q,w) means the automaton is in state q and reads word w .

The step relation ` of M is defined on configurations by

(q,aw) ` (q ′,w) if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Then (q0,abba) ` (q0,bba) ` (q1,ba) `

(q0,a) ` (q0, λ).

We define `∗ as the reflexive transitive closure of `.

Continuing the above example, we have (q0,abba) `∗ (q0, λ).

DFAs Reading Words

Let M = (Q, Σ, δ, q0,F) be a DFA.

A configuration of M is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

So (q,w) means the automaton is in state q and reads word w .

The step relation ` of M is defined on configurations by

(q,aw) ` (q ′,w) if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Then (q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) `

(q0, λ).

We define `∗ as the reflexive transitive closure of `.

Continuing the above example, we have (q0,abba) `∗ (q0, λ).

DFAs Reading Words

Let M = (Q, Σ, δ, q0,F) be a DFA.

A configuration of M is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

So (q,w) means the automaton is in state q and reads word w .

The step relation ` of M is defined on configurations by

(q,aw) ` (q ′,w) if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Then (q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ).

We define `∗ as the reflexive transitive closure of `.

Continuing the above example, we have (q0,abba) `∗ (q0, λ).

DFAs Reading Words

Let M = (Q, Σ, δ, q0,F) be a DFA.

A configuration of M is a pair (q,w) with q ∈ Q and w ∈ Σ∗.

So (q,w) means the automaton is in state q and reads word w .

The step relation ` of M is defined on configurations by

(q,aw) ` (q ′,w) if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Then (q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ).

We define `∗ as the reflexive transitive closure of `.

Continuing the above example, we have (q0,abba) `∗ (q0, λ).

Transition Function in Table Notation

Example DFA
Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

Hint: transition function δ can be written in the form of a table:

δ q0 q1
a q0 q1
b q1 q0

DFAs as Transition Graphs

A DFA can be visualised as a transition graph, consisting of:
states are the nodes of the graph

starting state indicated by an extra incoming arrow

final states indicated by double circle

arrows with labels from Σ: q a→ q ′ if δ(q,a) = q ′

Let M = (Q, Σ, δ, q0,F) with Q = {q0,q1}, Σ = {a,b}, F = {q0},

δ(q0,a) = q0 δ(q1,a) = q1

δ(q0,b) = q1 δ(q1,b) = q0

is visualised as the transition graph

q0 q1
b

b

a a

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q =

{ z0, z1, z2 }

alphabet Σ =

{a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a

z1 z2 z1

b

z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q =

{ z0, z1, z2 }

alphabet Σ =

{a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a

z1 z2 z1

b

z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ =

{a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a

z1 z2 z1

b

z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a

z1 z2 z1

b

z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1

z2 z1

b

z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1 z2

z1

b

z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1 z2 z1
b

z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1 z2 z1
b z2

z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1 z2 z1
b z2 z2

z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1 z2 z1
b z2 z2 z0

starting state

z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1 z2 z1
b z2 z2 z0

starting state z0

final states F =

{ z0, z1 }

Exercise

An arrow with label a,b is shorthand for two arrows: one with
label a and one with label b.

z0 z2

z1

a

b

a,ba

b

What is this DFA?

states Q = { z0, z1, z2 }

alphabet Σ = {a,b }

transition function δ : Q × Σ→ Q :

δ z0 z1 z2
a z1 z2 z1
b z2 z2 z0

starting state z0

final states F = { z0, z1 }

Paths in DFAs

Let M = (Q, Σ, δ, q0,F) be a DFA.

For a word w = a1 · · · an, n ≥ 0, we write

q0
w−→−→ qn

if there are states q1, . . . ,qn−1 such that

q0
a1→ q1 q1

a2→ q2 . . . qn−1
an→ qn

z0

z2

z1

a

b

a,b

a

b

z1
λ−→−→ z1

z0
ab−→−→ z2

z0
abba−→−→ z1

Theorem: q w−→−→ q ′ ⇐⇒ (q,w) `∗ (q ′, λ).

Paths in DFAs

Let M = (Q, Σ, δ, q0,F) be a DFA.

For a word w = a1 · · · an, n ≥ 0, we write

q0
w−→−→ qn

if there are states q1, . . . ,qn−1 such that

q0
a1→ q1 q1

a2→ q2 . . . qn−1
an→ qn

z0

z2

z1

a

b

a,b

a

b

z1
λ−→−→ z1

z0
ab−→−→ z2

z0
abba−→−→ z1

Theorem: q w−→−→ q ′ ⇐⇒ (q,w) `∗ (q ′, λ).

Paths in DFAs

Let M = (Q, Σ, δ, q0,F) be a DFA.

For a word w = a1 · · · an, n ≥ 0, we write

q0
w−→−→ qn

if there are states q1, . . . ,qn−1 such that

q0
a1→ q1 q1

a2→ q2 . . . qn−1
an→ qn

z0

z2

z1

a

b

a,b

a

b

z1
λ−→−→ z1

z0
ab−→−→ z2

z0
abba−→−→ z1

Theorem: q w−→−→ q ′ ⇐⇒ (q,w) `∗ (q ′, λ).

Regular Languages

A DFA defines (accepts) a language!

The language accepted by DFA M = (Q, Σ, δ, q0,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q ∈ F }

q0 q1
b

b

a a

We have

(q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ)

The word abba is accepted by M, that is, abba ∈ L(M).

A language L is regular if there exists a DFA M with L(M) = L.

Regular Languages

A DFA defines (accepts) a language!

The language accepted by DFA M = (Q, Σ, δ, q0,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q ∈ F }

q0 q1
b

b

a a

We have

(q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ)

The word abba is accepted by M, that is, abba ∈ L(M).

A language L is regular if there exists a DFA M with L(M) = L.

Regular Languages

A DFA defines (accepts) a language!

The language accepted by DFA M = (Q, Σ, δ, q0,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q ∈ F }

q0 q1
b

b

a a

We have

(q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ)

The word abba is accepted by M, that is, abba ∈ L(M).

A language L is regular if there exists a DFA M with L(M) = L.

Regular Languages

A DFA defines (accepts) a language!

The language accepted by DFA M = (Q, Σ, δ, q0,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q ∈ F }

q0 q1
b

b

a a

We have

(q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ)

The word abba is accepted by M, that is, abba ∈ L(M).

A language L is regular if there exists a DFA M with L(M) = L.

Regular Languages

A DFA defines (accepts) a language!

The language accepted by DFA M = (Q, Σ, δ, q0,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q ∈ F }

q0 q1
b

b

a a

We have

(q0,abba) ` (q0,bba) ` (q1,ba) ` (q0,a) ` (q0, λ)

The word abba is accepted by M, that is, abba ∈ L(M).

A language L is regular if there exists a DFA M with L(M) = L.

Exercise (1)

Let M be the following DFA:

q0 q1
b

b

a a

Describe the language accepted by M.

Answer:
L(M) consists of all words over the alphabet {a,b } that
contain an even number of b’s.

Exercise (1)

Let M be the following DFA:

q0 q1
b

b

a a

Describe the language accepted by M.

Answer:
L(M) consists of all words over the alphabet {a,b } that
contain an even number of b’s.

Exercise (2)

Show that the following language is regular:

{ λ }

Construct a deterministic finite automaton for the language.

Exercise (3)

Show that the following language is regular:

{anb | n ≥ 0 }

Construct a deterministic finite automaton for the language.

Exercise (4)

Show that the following language is regular:

{a2n+1 | n ≥ 0 } ∪ {b2n | n ≥ 0 }

Construct a deterministic finite automaton for the language.

DFAs are Deterministic

Recall that δ is a function from Q × Σ to Q.

DFAs are deterministic:
For every state q ∈ Q and every symbol a ∈ Σ, the state q
has precisely one outgoing arrow with label a.

Hence, for every input word, there is precisely one path from
the starting state through the transition graph.

The following picture shows the path for aaba:

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

DFAs are Deterministic

Recall that δ is a function from Q × Σ to Q.

DFAs are deterministic:
For every state q ∈ Q and every symbol a ∈ Σ, the state q
has precisely one outgoing arrow with label a.

Hence, for every input word, there is precisely one path from
the starting state through the transition graph.

The following picture shows the path for aaba:

q0 q2 q4

q1

q3

a

b

a ba
b

a

b

a

b

Exercise (5)

Construct deterministic finite automata for the languages:

{w ∈ {a,b}∗ | w contains the subword bab }

and

{w ∈ {a,b}∗ | w does not contain the subword bab }

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q. Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q. Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q. Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q. Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q. Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q.

Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q. Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Complement

Theorem
If L is a regular language, then L is also regular.

Proof.
Let L be regular.

Then there exists a DFA M = (Q, Σ, δ, q0,F) with L(M) = L.

Then N = (Q, Σ, δ, q0,Q \ F) is a DFA with L(N) = L.

Here it is important that for every input word w :
There is precisely one path starting at q0 labelled with w .

There is precisely one state q with q0
w−→−→ q. Thus

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ F

w ∈ L ⇐⇒ w ∈ L(M) ⇐⇒ q ∈ (Q \ F) ⇐⇒ w ∈ L(N)

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where

Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q =

Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) =

(δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))

q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 =

(q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F =

{ (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Union

Theorem
If L1 and L2 are regular, then L1 ∪ L2 is regular.

Construction (Product)
There exists a DFAs

M1 = (Q1, Σ, δ1,q0,1,F1) M2 = (Q2, Σ, δ2,q0,2,F2)

such that L(M1) = L1 and L(M2) = L2.

Idea: We run M1 and M2 in parallel.

We define a DFA N = (Q, Σ, δ, q0,F) where
Q = Q1 ×Q2 = { (q1,q2) | q1 ∈ Q1, q2 ∈ Q2 }

δ((q1,q2),a) = (δ1(q1,a), δ2(q2,a))
q0 = (q0,1, q0,2)

F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

Then it follows that L(N) = L(M1) ∪ L(M2) = L1 ∪ L2.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F =

{ (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F =

{ (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Regular Languages: Intersection, Difference

Question
Change the product construction to show that

L1 ∩ L2 is regular, and

L1 \ L2 is regular ?

Answer: it suffices to change the definition of the final states
for L1 ∪ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 or q2 ∈ F2 }

for L1 ∩ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 ∈ F2 }

for L1 \ L2: F = { (q1,q2) ∈ Q | q1 ∈ F1 and q2 6∈ F2 }

Theorem
If L1 and L2 are regular, then L1 ∩ L2 is regular.

Theorem
If L1 and L2 are regular, then L1 \ L2 is regular.

Exercise

Question
Is the following language regular?

{anbn | n ≥ 0 }

This language is not regular!

Intuition: a DFA has only a finite memory (the states).

We will later prove this using the pumping lemma.

Exercise

Question
Is the following language regular?

{anbn | n ≥ 0 }

This language is not regular!

Intuition: a DFA has only a finite memory (the states).

We will later prove this using the pumping lemma.

Exercise

Question
Is the following language regular?

{anbn | n ≥ 0 }

This language is not regular!

Intuition: a DFA has only a finite memory (the states).

We will later prove this using the pumping lemma.

Finite Languages are Regular

Theorem
Every finite language L regular.

Construction
Let N be the length of the longest word in L.

Define the DFA M = (Q, Σ, δ, qλ,F) by
Q = {qw | w ∈ Σ∗, |w | ≤ N } ∪ {q⊥ }

F = {qw | w ∈ L }

the transition function δ is defined by

δ(qw ,a) =

{
qwa if |wa| ≤ N,
q⊥ if |wa| > N

δ(q⊥,a) = q⊥

for every w ∈ Σ∗ with |w | ≤ N and a ∈ Σ

Finite Languages are Regular

Theorem
Every finite language L regular.

Construction
Let N be the length of the longest word in L.

Define the DFA M = (Q, Σ, δ, qλ,F) by
Q = {qw | w ∈ Σ∗, |w | ≤ N } ∪ {q⊥ }

F = {qw | w ∈ L }

the transition function δ is defined by

δ(qw ,a) =

{
qwa if |wa| ≤ N,
q⊥ if |wa| > N

δ(q⊥,a) = q⊥

for every w ∈ Σ∗ with |w | ≤ N and a ∈ Σ

Finite Languages are Regular

Theorem
Every finite language L regular.

Construction
Let N be the length of the longest word in L.

Define the DFA M = (Q, Σ, δ, qλ,F) by

Q = {qw | w ∈ Σ∗, |w | ≤ N } ∪ {q⊥ }

F = {qw | w ∈ L }

the transition function δ is defined by

δ(qw ,a) =

{
qwa if |wa| ≤ N,
q⊥ if |wa| > N

δ(q⊥,a) = q⊥

for every w ∈ Σ∗ with |w | ≤ N and a ∈ Σ

Finite Languages are Regular

Theorem
Every finite language L regular.

Construction
Let N be the length of the longest word in L.

Define the DFA M = (Q, Σ, δ, qλ,F) by
Q = {qw | w ∈ Σ∗, |w | ≤ N } ∪ {q⊥ }

F = {qw | w ∈ L }

the transition function δ is defined by

δ(qw ,a) =

{
qwa if |wa| ≤ N,
q⊥ if |wa| > N

δ(q⊥,a) = q⊥

for every w ∈ Σ∗ with |w | ≤ N and a ∈ Σ

Finite Languages are Regular

Theorem
Every finite language L regular.

Construction
Let N be the length of the longest word in L.

Define the DFA M = (Q, Σ, δ, qλ,F) by
Q = {qw | w ∈ Σ∗, |w | ≤ N } ∪ {q⊥ }

F = {qw | w ∈ L }

the transition function δ is defined by

δ(qw ,a) =

{
qwa if |wa| ≤ N,
q⊥ if |wa| > N

δ(q⊥,a) = q⊥

for every w ∈ Σ∗ with |w | ≤ N and a ∈ Σ

Finite Languages are Regular

Theorem
Every finite language L regular.

Construction
Let N be the length of the longest word in L.

Define the DFA M = (Q, Σ, δ, qλ,F) by
Q = {qw | w ∈ Σ∗, |w | ≤ N } ∪ {q⊥ }

F = {qw | w ∈ L }

the transition function δ is defined by

δ(qw ,a) =

{
qwa if |wa| ≤ N,
q⊥ if |wa| > N

δ(q⊥,a) = q⊥

for every w ∈ Σ∗ with |w | ≤ N and a ∈ Σ

Nondeterministic Finite Automata

Nondeterministic Finite Automata

NFAs are defined like DFAs, except that NFAs allow for:
Multiple starting states.

Any number of outgoing arrows with the same label.

Empty steps: arrows labelled λ (do not consume input).

q0 q1 q2
a

λ

b

b

a

Note that:
both q0 and q2 are starting states

the state q1 has two outgoing arrows with label b

there is an empty step from q0 to q1

Nondeterministic Finite Automata

A nondeterministic finite automaton, short NFA, consists of:
a finite set Q of states

a finite input alphabet Σ

a transition function δ : Q × (Σ ∪ {λ})→ 2Q

a set S ⊆ Q of starting states

a set F ⊆ Q of final states

Here 2Q is the set of all subsets of Q: 2Q = {X | X ⊆ Q }.

The NFA on the preceding slide is M = (Q, Σ, δ,S,F) where

Q = {q0,q1,q2 }

Σ = {a,b }

S = {q0,q2 }

F = {q1 }

δ q0 q1 q2
a {q1 } ∅ {q0 }

b ∅ {q1,q2 } ∅
λ {q1 } ∅ ∅

NFAs Reading Words

Let M = (Q, Σ, δ,S,F) be a NFA.

The step relation ` of M is defined on configurations by

(q, αw) ` (q ′,w) if q ′ ∈ δ(q, α) with α ∈ Σ ∪ {λ}

Note that if α = λ, then
the state changes (q to q ′), but

the input word stays the same (λw = w).

q0 q1 q2
a

λ

b

b

a

(q0,abbab) ` (q1,bbab) ` (q1,bab) ` (q2,ab)
` (q0,b) ` (q1,b) ` (q1, λ)

NFAs Reading Words

Let M = (Q, Σ, δ,S,F) be a NFA.

The step relation ` of M is defined on configurations by

(q, αw) ` (q ′,w) if q ′ ∈ δ(q, α) with α ∈ Σ ∪ {λ}

Note that if α = λ, then
the state changes (q to q ′), but

the input word stays the same (λw = w).

q0 q1 q2
a

λ

b

b

a

(q0,abbab) ` (q1,bbab) ` (q1,bab) ` (q2,ab)
` (q0,b) ` (q1,b) ` (q1, λ)

NFAs Reading Words

Let M = (Q, Σ, δ,S,F) be a NFA.

The step relation ` of M is defined on configurations by

(q, αw) ` (q ′,w) if q ′ ∈ δ(q, α) with α ∈ Σ ∪ {λ}

Note that if α = λ, then
the state changes (q to q ′), but

the input word stays the same (λw = w).

q0 q1 q2
a

λ

b

b

a

(q0,abbab) ` (q1,bbab) ` (q1,bab) ` (q2,ab)
` (q0,b) ` (q1,b) ` (q1, λ)

Paths in NFAs

Let M = (Q, Σ, δ,S,F) be a NFA.

For a word w , we write

q w−→−→ q ′

if w = α1 · · ·αn for some α1, . . . , αn ∈ (Σ ∪ {λ}) and there are
states q1, . . . ,qn−1 such that

q α1→ q1 q1
α2→ q2 q2

α3→ q3 . . . qn−1
αn→ q ′

q0 q1 q2
a

λ

b

b

a

q0
λ−→−→ q0

q0
λ−→−→ q1

q1
b−→−→ q1

q1
b−→−→ q2

q1
ba−→−→ q0

q1
ba−→−→ q1

q0
abbab−→−→ q1

q0
abbab−→−→ q2

Theorem: q w−→−→ q ′ ⇐⇒ (q,w) `∗ (q ′, λ).

Paths in NFAs

Let M = (Q, Σ, δ,S,F) be a NFA.

For a word w , we write

q w−→−→ q ′

if w = α1 · · ·αn for some α1, . . . , αn ∈ (Σ ∪ {λ}) and there are
states q1, . . . ,qn−1 such that

q α1→ q1 q1
α2→ q2 q2

α3→ q3 . . . qn−1
αn→ q ′

q0 q1 q2
a

λ

b

b

a

q0
λ−→−→ q0

q0
λ−→−→ q1

q1
b−→−→ q1

q1
b−→−→ q2

q1
ba−→−→ q0

q1
ba−→−→ q1

q0
abbab−→−→ q1

q0
abbab−→−→ q2

Theorem: q w−→−→ q ′ ⇐⇒ (q,w) `∗ (q ′, λ).

Paths in NFAs

Let M = (Q, Σ, δ,S,F) be a NFA.

For a word w , we write

q w−→−→ q ′

if w = α1 · · ·αn for some α1, . . . , αn ∈ (Σ ∪ {λ}) and there are
states q1, . . . ,qn−1 such that

q α1→ q1 q1
α2→ q2 q2

α3→ q3 . . . qn−1
αn→ q ′

q0 q1 q2
a

λ

b

b

a

q0
λ−→−→ q0

q0
λ−→−→ q1

q1
b−→−→ q1

q1
b−→−→ q2

q1
ba−→−→ q0

q1
ba−→−→ q1

q0
abbab−→−→ q1

q0
abbab−→−→ q2

Theorem: q w−→−→ q ′ ⇐⇒ (q,w) `∗ (q ′, λ).

NFAs Accepting Languages

The language accepted by NFA M = (Q, Σ, δ,S,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q0 ∈ S, q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q0 ∈ S, q ∈ F }

q0 q1 q2
a

λ

b

b

a
Paths are not unique! Paths for input word ab:

(q0,ab) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q0,ab) ` (q1,b) ` (q2, λ)

(q2,ab) ` (q0,b) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q2,ab) ` (q0,b) ` (q1,b) ` (q2, λ)

One accepting path suffices! So ab is accepted.

NFAs Accepting Languages

The language accepted by NFA M = (Q, Σ, δ,S,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q0 ∈ S, q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q0 ∈ S, q ∈ F }

q0 q1 q2
a

λ

b

b

a
Paths are not unique!

Paths for input word ab:

(q0,ab) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q0,ab) ` (q1,b) ` (q2, λ)

(q2,ab) ` (q0,b) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q2,ab) ` (q0,b) ` (q1,b) ` (q2, λ)

One accepting path suffices! So ab is accepted.

NFAs Accepting Languages

The language accepted by NFA M = (Q, Σ, δ,S,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q0 ∈ S, q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q0 ∈ S, q ∈ F }

q0 q1 q2
a

λ

b

b

a
Paths are not unique! Paths for input word ab:

(q0,ab) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q0,ab) ` (q1,b) ` (q2, λ)

(q2,ab) ` (q0,b) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q2,ab) ` (q0,b) ` (q1,b) ` (q2, λ)

One accepting path suffices! So ab is accepted.

NFAs Accepting Languages

The language accepted by NFA M = (Q, Σ, δ,S,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q0 ∈ S, q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q0 ∈ S, q ∈ F }

q0 q1 q2
a

λ

b

b

a
Paths are not unique! Paths for input word ab:

(q0,ab) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q0,ab) ` (q1,b) ` (q2, λ)

(q2,ab) ` (q0,b) ` (q1,b) ` (q1, λ)

(ends in accepting state)

(q2,ab) ` (q0,b) ` (q1,b) ` (q2, λ)

One accepting path suffices! So ab is accepted.

NFAs Accepting Languages

The language accepted by NFA M = (Q, Σ, δ,S,F) is

L(M) = {w ∈ Σ∗ | (q0,w) `∗ (q, λ) with q0 ∈ S, q ∈ F }

= {w ∈ Σ∗ | q0
w−→−→ q with q0 ∈ S, q ∈ F }

q0 q1 q2
a

λ

b

b

a
Paths are not unique! Paths for input word ab:

(q0,ab) ` (q1,b) ` (q1, λ) (ends in accepting state)
(q0,ab) ` (q1,b) ` (q2, λ)

(q2,ab) ` (q0,b) ` (q1,b) ` (q1, λ) (ends in accepting state)
(q2,ab) ` (q0,b) ` (q1,b) ` (q2, λ)

One accepting path suffices! So ab is accepted.

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows
add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.
Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows
add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.
Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows

add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.
Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows
add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.
Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows
add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.
Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows
add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.

Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows
add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.
Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

NFAs with a Single Starting State

For every NFA M there is an NFA N such that L(M) = L(N) and
N has a single starting state.

Construction
Let N = (Q, Σ, δ,S,F) be an NFA.

Define M the be obtained from N as follows
add a fresh state q0,

add transitions q0
λ→ q for every q ∈ S, and

make q0 the only starting state of M.
Then M has a single starting state and L(N) = L(M).

Convention
We denote NFAs (Q, Σ, δ,S,F) with a single starting state
S = {q0 } by (Q, Σ, δ, q0,F).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ =

2Q = {X | X ⊆ Q }

δ ′(X ,a) =

{q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 =

{q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ =

{X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.

Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ =

2Q = {X | X ⊆ Q }

δ ′(X ,a) =

{q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 =

{q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ =

{X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in

We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F
′) where

Q ′ =

2Q = {X | X ⊆ Q }

δ ′(X ,a) =

{q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 =

{q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ =

{X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ =

2Q = {X | X ⊆ Q }

δ ′(X ,a) =

{q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 =

{q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ =

{X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ = 2Q = {X | X ⊆ Q }

δ ′(X ,a) =

{q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 =

{q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ =

{X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ = 2Q = {X | X ⊆ Q }

δ ′(X ,a) = {q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 =

{q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ =

{X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ = 2Q = {X | X ⊆ Q }

δ ′(X ,a) = {q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 = {q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ =

{X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ = 2Q = {X | X ⊆ Q }

δ ′(X ,a) = {q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 = {q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ = {X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

DFAs and NFAs are Equally Expressive

Theorem
A language L is accepted by a NFA ⇐⇒ L is regular.

Construction (Powerset)
Let M = (Q, Σ, δ,S,F) be a NFA.
Idea: state of DFA = set of all states the NFA can be in
We construct a DFA N = (Q ′, Σ, δ ′,q ′0,F

′) where

Q ′ = 2Q = {X | X ⊆ Q }

δ ′(X ,a) = {q ′ ∈ Q | q a−→−→ q ′ for some q ∈ X }

q ′0 = {q ′ ∈ Q | q λ−→−→ q ′ for some q ∈ S }

F ′ = {X ⊆ Q | X ∩ F 6= ∅ }

For every w ∈ Σ∗ and X ⊆ Q it holds that

X w−→−→ X ′ in N ⇐⇒ X ′ = {q ′ | q ∈ X , q w−→−→ q ′ in M }

From this property it follows that L(N) = L(M).

Exercise

Given is the following NFA:

q0 q1

q2

a

λ

b

b

a

Construct a DFA that accepts the same language.

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by
reversing all arrows (transitions),

exchanging starting states S and final states F .
Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by
reversing all arrows (transitions),

exchanging starting states S and final states F .
Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by
reversing all arrows (transitions),

exchanging starting states S and final states F .
Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by

reversing all arrows (transitions),

exchanging starting states S and final states F .
Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by
reversing all arrows (transitions),

exchanging starting states S and final states F .
Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by
reversing all arrows (transitions),

exchanging starting states S and final states F .

Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by
reversing all arrows (transitions),

exchanging starting states S and final states F .
Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Regular Languages: Reversal

Theorem
If L is regular, then its reverse LR is regular.

Construction
Let L be a regular language.

Then there is an NFA M = (Q, Σ, δ,S,F) with L(M) = L.

Let N be the NFA obtained from M by
reversing all arrows (transitions),

exchanging starting states S and final states F .
Then we have

q w−→−→ q ′ in M ⇐⇒ q ′ wR
−→−→ q in N

Since starting and final states are swapped, it follows that

w ∈ L(M) ⇐⇒ wR ∈ L(N)

Exercise

Given is the following NFA:

q0 q1 q2
a

λ

b

b

a
Construct an NFA that accepts the reverse language:

q0 q1 q2
a

λ

b

b

a

Exercise

Given is the following NFA:

q0 q1 q2
a

λ

b

b

a
Construct an NFA that accepts the reverse language:

q0 q1 q2
a

λ

b

b

a

	Equivalence of DFAs and NFAs

