Automata Theory :: Finite Automata

Jörg Endrullis

Vrije Universiteit Amsterdam

Deterministic Finite Automata

Deterministic Finite Automata (DFAs)

A deterministic finite automaton, short DFA, consists of:

- a finite set Q of states
- a finite input alphabet Σ
- a transition function $\delta : Q \times \Sigma \to Q$
- a starting state $q_0 \in Q$
- a set $F \subseteq Q$ of final states

Deterministic Finite Automata (DFAs)

A deterministic finite automaton, short DFA, consists of:

- a finite set Q of states
- a finite input alphabet Σ
- a transition function $\delta : Q \times \Sigma \to Q$
- a starting state $q_0 \in Q$
- a set $F \subseteq Q$ of final states

Example DFA

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$

$\delta(q_0, a) = q_0$	$\delta(q_1, a) = q_1$
$\delta(q_0,b)=q_1$	$\delta(q_1,b) = q_0$

Deterministic Finite Automata (DFAs)

A deterministic finite automaton, short DFA, consists of:

- a finite set Q of states
- a finite input alphabet Σ
- a transition function $\delta : Q \times \Sigma \to Q$
- a starting state $q_0 \in Q$
- a set $F \subseteq Q$ of final states

Example DFA

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$

$$\begin{split} \delta(q_0, a) &= q_0 & \delta(q_1, a) = q_1 \\ \delta(q_0, b) &= q_1 & \delta(q_1, b) = q_0 \end{split}$$

Understanding the transition function $\delta: \boldsymbol{Q} \times \boldsymbol{\Sigma} \to \boldsymbol{Q}$

If the automaton in state *q* reads the symbol *a*, then the resulting state is $\delta(q, a)$.

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of *M* is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

So (q, w) means the automaton is in state q and reads word w.

The **step relation** \vdash of *M* is defined on configurations by

 $(q, aw) \vdash (q', w)$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of *M* is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

So (q, w) means the automaton is in state q and reads word w.

The step relation \vdash of *M* is defined on configurations by $(q, aw) \vdash (q', w)$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$ $\delta(q_0, a) = q_0$ $\delta(q_1, a) = q_1$ $\delta(q_0, b) = q_1$ $\delta(q_1, b) = q_0$ Then $(q_0, abba) \vdash$

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of *M* is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

So (q, w) means the automaton is in state q and reads word w.

The step relation \vdash of *M* is defined on configurations by $(q, aw) \vdash (q', w)$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$ $\delta(q_0, a) = q_0 \qquad \delta(q_1, a) = q_1$ $\delta(q_0, b) = q_1 \qquad \delta(q_1, b) = q_0$ Then $(q_0, abba) \vdash (q_0, bba) \vdash$

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of *M* is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

So (q, w) means the automaton is in state q and reads word w.

The step relation \vdash of *M* is defined on configurations by $(q, aw) \vdash (q', w)$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$ $\delta(q_0, a) = q_0 \qquad \delta(q_1, a) = q_1$ $\delta(q_0, b) = q_1 \qquad \delta(q_1, b) = q_0$ Then $(q_0, abba) \vdash (q_0, bba) \vdash (q_1, ba) \vdash$

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of *M* is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

So (q, w) means the automaton is in state q and reads word w.

The step relation \vdash of *M* is defined on configurations by $(q, aw) \vdash (q', w)$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$ $\delta(q_0, a) = q_0 \qquad \delta(q_1, a) = q_1$ $\delta(q_0, b) = q_1 \qquad \delta(q_1, b) = q_0$ Then $(q_0, abba) \vdash (q_0, bba) \vdash (q_1, ba) \vdash (q_0, a) \vdash$

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of *M* is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

So (q, w) means the automaton is in state q and reads word w.

The step relation \vdash of *M* is defined on configurations by $(q, aw) \vdash (q', w)$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$ $\delta(q_0, a) = q_0 \qquad \delta(q_1, a) = q_1$ $\delta(q_0, b) = q_1 \qquad \delta(q_1, b) = q_0$ Then $(q_0, abba) \vdash (q_0, bba) \vdash (q_1, ba) \vdash (q_0, a) \vdash (q_0, \lambda).$

Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA.

A configuration of *M* is a pair (q, w) with $q \in Q$ and $w \in \Sigma^*$.

So (q, w) means the automaton is in state q and reads word w.

The **step relation** \vdash of *M* is defined on configurations by $(q, aw) \vdash (q', w)$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$ $\delta(q_0, a) = q_0 \qquad \delta(q_1, a) = q_1$ $\delta(q_0, b) = q_1 \qquad \delta(q_1, b) = q_0$ Then $(q_0, abba) \vdash (q_0, bba) \vdash (q_1, ba) \vdash (q_0, a) \vdash (q_0, \lambda).$

We define \vdash^* as the **reflexive transitive closure of** \vdash .

Continuing the above example, we have $(q_0, abba) \vdash^* (q_0, \lambda)$.

Transition Function in Table Notation

Example DFA Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\}, \delta(q_0, a) = q_0 \qquad \delta(q_1, a) = q_1 \\ \delta(q_0, b) = q_1 \qquad \delta(q_1, b) = q_0$

Hint: transition function δ can be written in the form of a **table**:

$$\begin{array}{c|ccc}
\delta & q_0 & q_1 \\
a & q_0 & q_1 \\
b & q_1 & q_0
\end{array}$$

DFAs as Transition Graphs

A DFA can be visualised as a **transition graph**, consisting of:

- states are the nodes of the graph
 - starting state indicated by an extra incoming arrow
 - final states indicated by double circle
- **arrows** with labels from Σ : $q \xrightarrow{a} q'$ if $\delta(q, a) = q'$

Let $M = (Q, \Sigma, \delta, q_0, F)$ with $Q = \{q_0, q_1\}, \Sigma = \{a, b\}, F = \{q_0\},$ $\delta(q_0, a) = q_0$ $\delta(q_1, a) = q_1$ $\delta(q_0, b) = q_1$ $\delta(q_1, b) = q_0$

is visualised as the transition graph

Exercise

An arrow with label *a*, *b* is shorthand for two arrows: one with label *a* and one with label *b*.

- states Q =
- alphabet Σ =
- transition function $\delta : \boldsymbol{Q} \times \boldsymbol{\Sigma} \to \boldsymbol{Q}$:

$$\begin{array}{c|ccc} \delta & z_0 & z_1 & z_2 \\ \hline a & & & \\ b & & & & \end{array}$$

- starting state
- final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet Σ =

$$\begin{array}{c|ccc} \delta & z_0 & z_1 & z_2 \\ \hline a & & & \\ b & & & & \end{array}$$

- starting state
- final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet $\Sigma = \{a, b\}$

$$\begin{array}{c|ccc} \delta & z_0 & z_1 & z_2 \\ \hline a & & & \\ b & & & \end{array}$$

- starting state
- final states F =

What is this DFA?

• states
$$Q = \{z_0, z_1, z_2\}$$

• alphabet $\Sigma = \{a, b\}$

$$\begin{array}{c|ccc} \delta & Z_0 & Z_1 & Z_2 \\ \hline a & Z_1 & & \\ b & & & \end{array}$$

- starting state
- final states F =

What is this DFA?

• states
$$Q = \{z_0, z_1, z_2\}$$

• alphabet
$$\Sigma = \{a, b\}$$

$$\begin{array}{c|ccc} \delta & Z_0 & Z_1 & Z_2 \\ \hline a & Z_1 & Z_2 \\ b & & & \end{array}$$

starting state

final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet $\Sigma = \{a, b\}$

$$\begin{array}{c|ccc} \delta & Z_0 & Z_1 & Z_2 \\ \hline a & Z_1 & Z_2 & Z_1 \\ b & & & \end{array}$$

- starting state
- final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet $\Sigma = \{a, b\}$

$$\begin{array}{c|ccc} \delta & Z_0 & Z_1 & Z_2 \\ \hline a & Z_1 & Z_2 & Z_1 \\ b & Z_2 & & \end{array}$$

- starting state
- final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet $\Sigma = \{a, b\}$

δ	Z_0	<i>Z</i> 1	Z_2
а	<i>Z</i> 1	<i>Z</i> 2	<i>Z</i> 1
b	<i>Z</i> 2	<i>Z</i> 2	

- starting state
- final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet $\Sigma = \{a, b\}$

δ	Z_0	<i>Z</i> 1	Z_2
а	<i>Z</i> 1	<i>Z</i> 2	<i>Z</i> 1
b	<i>Z</i> 2	<i>Z</i> 2	Z_0

- starting state
- final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet $\Sigma = \{a, b\}$

δ	Z_0	<i>Z</i> 1	Z_2
а	<i>Z</i> 1	<i>Z</i> 2	<i>Z</i> 1
b	<i>Z</i> 2	<i>Z</i> 2	Z_0

- starting state z₀
- final states F =

- states $Q = \{z_0, z_1, z_2\}$
- alphabet $\Sigma = \{a, b\}$

δ	Z_0	<i>Z</i> 1	<i>Z</i> 2
а	<i>Z</i> 1	<i>Z</i> 2	<i>Z</i> 1
b	<i>Z</i> 2	<i>Z</i> 2	Z_0

- starting state z₀
- final states $F = \{z_0, z_1\}$

Paths in DFAs

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.
For a word $w = a_1 \cdots a_n$, $n \ge 0$, we write
 $q_0 \xrightarrow{w} q_n$
if there are states q_1, \dots, q_{n-1} such that
 $q_0 \xrightarrow{a_1} q_1 \qquad q_1 \xrightarrow{a_2} q_2 \qquad \dots \qquad q_{n-1} \xrightarrow{a_n} q_n$

Paths in DFAs

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.
For a word $w = a_1 \cdots a_n$, $n \ge 0$, we write
 $q_0 \xrightarrow{w} q_n$
if there are states q_1, \dots, q_{n-1} such that
 $q_0 \xrightarrow{a_1} q_1 \qquad q_1 \xrightarrow{a_2} q_2 \qquad \dots \qquad q_{n-1} \xrightarrow{a_n} q_n$

Paths in DFAs

Let
$$M = (Q, \Sigma, \delta, q_0, F)$$
 be a DFA.
For a word $w = a_1 \cdots a_n$, $n \ge 0$, we write
 $q_0 \xrightarrow{w} q_n$
if there are states q_1, \dots, q_{n-1} such that
 $q_0 \xrightarrow{a_1} q_1 \qquad q_1 \xrightarrow{a_2} q_2 \qquad \dots \qquad q_{n-1} \xrightarrow{a_n} q_n$

Theorem: $q \xrightarrow{w} q' \iff (q, w) \vdash^* (q', \lambda)$.

A DFA defines (accepts) a language!

A DFA defines (accepts) a language!

The **language accepted by** DFA $M = (Q, \Sigma, \delta, q_0, F)$ is $L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q \in F \}$ $= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q \in F \}$

A DFA defines (accepts) a language!

The language accepted by DFA $M = (Q, \Sigma, \delta, q_0, F)$ is

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q \in F \}$$
$$= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q \in F \}$$

We have

 $(q_0, abba) \vdash (q_0, bba) \vdash (q_1, ba) \vdash (q_0, a) \vdash (q_0, \lambda)$

A DFA defines (accepts) a language!

The language accepted by DFA $M = (Q, \Sigma, \delta, q_0, F)$ is

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q \in F \}$$
$$= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q \in F \}$$

We have

 $(q_0, abba) \vdash (q_0, bba) \vdash (q_1, ba) \vdash (q_0, a) \vdash (q_0, \lambda)$ The word *abba* is accepted by *M*, that is, *abba* $\in L(M)$.

A DFA defines (accepts) a language!

The language accepted by DFA $M = (Q, \Sigma, \delta, q_0, F)$ is

$$L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q \in F \}$$
$$= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q \in F \}$$

We have

 $(q_0, abba) \vdash (q_0, bba) \vdash (q_1, ba) \vdash (q_0, a) \vdash (q_0, \lambda)$

The word *abba* is accepted by *M*, that is, *abba* $\in L(M)$.

A language *L* is **regular** if there exists a DFA *M* with L(M) = L.

Let *M* be the following DFA:

Describe the language accepted by *M*.

Let *M* be the following DFA:

Describe the language accepted by M.

Answer:

L(M) consists of all words over the alphabet $\{a, b\}$ that contain an even number of *b*'s.
Show that the following language is regular:

 $\{\lambda\}$

Construct a deterministic finite automaton for the language.

Show that the following language is regular:

```
\{a^n b \mid n \ge 0\}
```

Construct a deterministic finite automaton for the language.

Show that the following language is regular:

$$a^{2n+1} | n \ge 0 \} \cup \{ b^{2n} | n \ge 0 \}$$

Construct a deterministic finite automaton for the language.

DFAs are Deterministic

Recall that δ is a function from $Q \times \Sigma$ to Q.

DFAs are deterministic:

For every state $q \in Q$ and every symbol $a \in \Sigma$, the state q has **precisely one outgoing arrow** with label a.

DFAs are Deterministic

Recall that δ is a function from $Q \times \Sigma$ to Q.

DFAs are deterministic:

For every state $q \in Q$ and every symbol $a \in \Sigma$, the state q has **precisely one outgoing arrow** with label a.

Hence, for every input word, there is precisely one path from the starting state through the transition graph.

The following picture shows the path for *aaba*:

Exercise (5)

Construct deterministic finite automata for the languages:

 $\{ w \in \{a, b\}^* \mid w \text{ contains the subword } bab \}$

and

 $\{w \in \{a, b\}^* \mid w \text{ does not contain the subword } bab\}$

Theorem

If *L* is a regular language, then \overline{L} is also regular.

Theorem

If *L* is a regular language, then \overline{L} is also regular.

Proof.

Let *L* be regular.

Theorem

If *L* is a regular language, then \overline{L} is also regular.

Proof.

Let *L* be regular.

Then there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L.

Theorem

If *L* is a regular language, then \overline{L} is also regular.

Proof.

Let *L* be regular.

Then there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L.

Then $N = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA with $L(N) = \overline{L}$.

Theorem

If *L* is a regular language, then \overline{L} is also regular.

Proof.

Let *L* be regular.

Then there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L.

Then $N = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA with $L(N) = \overline{L}$.

Here it is important that for every input word *w*:

• There is precisely one path starting at *q*₀ labelled with *w*.

Theorem

If L is a regular language, then \overline{L} is also regular.

Proof.

Let *L* be regular.

Then there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L.

Then $N = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA with $L(N) = \overline{L}$.

Here it is important that for every input word *w*:

- There is precisely one path starting at *q*₀ labelled with *w*.
- There is precisely one state q with $q_0 \xrightarrow{w} q$.

Theorem

If L is a regular language, then \overline{L} is also regular.

Proof.

Let *L* be regular.

Then there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L.

Then $N = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA with $L(N) = \overline{L}$.

Here it is important that for every input word *w*:

- There is precisely one path starting at *q*₀ labelled with *w*.
- There is precisely one state q with $q_0 \xrightarrow{w} q$. Thus

 $w \in L \iff w \in L(M) \iff q \in F$

Theorem

If L is a regular language, then \overline{L} is also regular.

Proof.

Let L be regular.

Then there exists a DFA $M = (Q, \Sigma, \delta, q_0, F)$ with L(M) = L.

Then $N = (Q, \Sigma, \delta, q_0, Q \setminus F)$ is a DFA with $L(N) = \overline{L}$.

Here it is important that for every input word *w*:

- There is precisely one path starting at *q*₀ labelled with *w*.
- There is precisely one state q with $q_0 \xrightarrow{w} q$. Thus

 $w \in L \iff w \in L(M) \iff q \in F$ $w \in \overline{L} \iff w \in \overline{L(M)} \iff q \in (Q \setminus F) \iff w \in L(N)$

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

We define a DFA $N = (Q, \Sigma, \delta, q_0, F)$ where

Q =

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

We define a DFA $N = (Q, \Sigma, \delta, q_0, F)$ where

 $Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

$$Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$$

•
$$\delta((q_1, q_2), a) =$$

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

We define a DFA $N = (Q, \Sigma, \delta, q_0, F)$ where

$$Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$$

• $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

We define a DFA $N = (Q, \Sigma, \delta, q_0, F)$ where

$$Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$$

• $\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$

■ *q*₀ =

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

$$Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$$

•
$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

$$\bullet q_0 = (q_{0,1}, q_{0,2})$$

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

$$Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$$

•
$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

•
$$q_0 = (q_{0,1}, q_{0,2})$$

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

$$Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$$

•
$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

•
$$q_0 = (q_{0,1}, q_{0,2})$$

•
$$F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$$

Theorem

If L_1 and L_2 are regular, then $L_1 \cup L_2$ is regular.

Construction (Product)

There exists a DFAs

 $M_1 = (Q_1, \Sigma, \delta_1, q_{0,1}, F_1)$ $M_2 = (Q_2, \Sigma, \delta_2, q_{0,2}, F_2)$

such that $L(M_1) = L_1$ and $L(M_2) = L_2$.

Idea: We run M_1 and M_2 in parallel.

We define a DFA $N = (Q, \Sigma, \delta, q_0, F)$ where

$$Q = Q_1 \times Q_2 = \{ (q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2 \}$$

•
$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

•
$$q_0 = (q_{0,1}, q_{0,2})$$

•
$$F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$$

Then it follows that $L(N) = L(M_1) \cup L(M_2) = L_1 \cup L_2$.

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Answer: it suffices to change the definition of the final states

• for $L_1 \cup L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Answer: it suffices to change the definition of the final states

• for $L_1 \cup L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$

• for $L_1 \cap L_2$: *F* =

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Answer: it suffices to change the definition of the final states

- for $L_1 \cup L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$
- for $L_1 \cap L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Answer: it suffices to change the definition of the final states

- for $L_1 \cup L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$
- for $L_1 \cap L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$
- for $L_1 \setminus L_2$: F =

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Answer: it suffices to change the definition of the final states

• for $L_1 \cup L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$

- for $L_1 \cap L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$
- for $L_1 \setminus L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \notin F_2 \}$

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Answer: it suffices to change the definition of the final states

- for $L_1 \cup L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$
- for $L_1 \cap L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$
- for $L_1 \setminus L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \notin F_2 \}$

Theorem

If L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular.

Question

Change the product construction to show that

- $L_1 \cap L_2$ is regular, and
- $L_1 \setminus L_2$ is regular ?

Answer: it suffices to change the definition of the final states

- for $L_1 \cup L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ or } q_2 \in F_2 \}$
- for $L_1 \cap L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \in F_2 \}$
- for $L_1 \setminus L_2$: $F = \{ (q_1, q_2) \in Q \mid q_1 \in F_1 \text{ and } q_2 \notin F_2 \}$

Theorem

If L_1 and L_2 are regular, then $L_1 \cap L_2$ is regular.

Theorem

If L_1 and L_2 are regular, then $L_1 \setminus L_2$ is regular.

Question

Is the following language regular?

 $\{a^{n}b^{n} | n \geq 0\}$
Question Is the following language regular? $\{a^nb^n \mid n \ge 0\}$ This language is not regular!

Question Is the following language regular? $\{a^nb^n \mid n \ge 0\}$ This language is not regular! Intuition: a DFA has only a finite memory (the states).

We will later prove this using the **pumping lemma**.

Theorem

Every finite language L regular.

Theorem

Every finite language *L* regular.

Construction

Let *N* be the length of the longest word in *L*.

Theorem

Every finite language *L* regular.

Construction

Let N be the length of the longest word in L.

Define the DFA $M = (Q, \Sigma, \delta, q_{\lambda}, F)$ by

Theorem

Every finite language L regular.

Construction

Let N be the length of the longest word in L.

Define the DFA $M = (Q, \Sigma, \delta, q_{\lambda}, F)$ by

■
$$Q = \{ q_w \mid w \in \Sigma^*, |w| \le N \} \cup \{ q_\perp \}$$

Theorem

Every finite language L regular.

Construction

Let N be the length of the longest word in L.

Define the DFA $M = (Q, \Sigma, \delta, q_{\lambda}, F)$ by

$$Q = \{ q_w \mid w \in \Sigma^*, \ |w| \le N \} \cup \{ q_\perp \}$$

•
$$F = \{ q_w \mid w \in L \}$$

Theorem

Every finite language L regular.

Construction

Let N be the length of the longest word in L.

Define the DFA $M = (Q, \Sigma, \delta, q_{\lambda}, F)$ by

- $Q = \{ q_w \mid w \in \Sigma^*, |w| \le N \} \cup \{ q_\perp \}$
- $F = \{ q_w \mid w \in L \}$

• the transition function δ is defined by

$$\delta(q_w, a) = egin{cases} q_{wa} & ext{if } |wa| \leq N, \ q_\perp & ext{if } |wa| > N \end{cases} \qquad \delta(q_\perp, a) = q_\perp$$

for every $w \in \Sigma^*$ with $|w| \leq N$ and $a \in \Sigma$

Nondeterministic Finite Automata

Nondeterministic Finite Automata

NFAs are defined like DFAs, except that NFAs allow for:

- Multiple starting states.
- Any number of outgoing arrows with the same label.
- **Empty steps**: arrows labelled λ (do not consume input).

Note that:

- both q_0 and q_2 are starting states
- the state q₁ has two outgoing arrows with label b
- there is an empty step from q₀ to q₁

Nondeterministic Finite Automata

A nondeterministic finite automaton, short NFA, consists of:

- a finite set Q of states
- a finite input alphabet Σ
- a transition function $\delta : \mathbf{Q} \times (\Sigma \cup \{\lambda\}) \to \mathbf{2}^{\mathbf{Q}}$
- a set $S \subseteq Q$ of starting states
- a set $F \subseteq Q$ of final states

Here 2^Q is the set of all subsets of Q: $2^Q = \{X \mid X \subseteq Q\}$.

The NFA on the preceding slide is $M = (Q, \Sigma, \delta, S, F)$ where

$Q = \{ q_0, q_1, q_2 \}$	δ	q_0	q_1	q_2
$\Sigma = \{a, b\}$	а	$\{ q_1 \}$	Ø	$\{ q_0 \}$
$\mathcal{S} = \set{q_0, q_2}$	b	Ø	$\{q_1, q_2\}$	Ø
$F = \{ q_1 \}$	λ	$\{ q_1 \}$	Ø	Ø

NFAs Reading Words

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

The **step relation** \vdash of *M* is defined on configurations by

 $(q, \alpha w) \vdash (q', w)$ if $q' \in \delta(q, \alpha)$ with $\alpha \in \Sigma \cup \{\lambda\}$

NFAs Reading Words

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

The step relation \vdash of *M* is defined on configurations by

 $(q, \alpha w) \vdash (q', w)$ if $q' \in \delta(q, \alpha)$ with $\alpha \in \Sigma \cup \{\lambda\}$

Note that if $\alpha = \lambda$, then

- the state changes (q to q'), but
- the input word stays the same $(\lambda w = w)$.

NFAs Reading Words

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

The step relation \vdash of *M* is defined on configurations by

 $(q, \alpha w) \vdash (q', w)$ if $q' \in \delta(q, \alpha)$ with $\alpha \in \Sigma \cup \{\lambda\}$

Note that if $\alpha = \lambda$, then

- the state changes (q to q'), but
- the input word stays the same $(\lambda w = w)$.

 $(q_0, abbab) \vdash (q_1, bbab) \vdash (q_1, bab) \vdash (q_2, ab)$ $\vdash (q_0, b) \vdash (q_1, b) \vdash (q_1, \lambda)$

Paths in NFAs

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

For a word w, we write

$$q \xrightarrow{w} q'$$

if $w = \alpha_1 \cdots \alpha_n$ for some $\alpha_1, \ldots, \alpha_n \in (\Sigma \cup \{\lambda\})$ and there are states q_1, \ldots, q_{n-1} such that

$$q \stackrel{lpha_1}{
ightarrow} q_1 \qquad q_1 \stackrel{lpha_2}{
ightarrow} q_2 \qquad q_2 \stackrel{lpha_3}{
ightarrow} q_3 \qquad \dots \qquad q_{n-1} \stackrel{lpha_n}{
ightarrow} q'$$

Paths in NFAs

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

For a word w, we write

$$q \xrightarrow{w} q'$$

if $w = \alpha_1 \cdots \alpha_n$ for some $\alpha_1, \ldots, \alpha_n \in (\Sigma \cup \{\lambda\})$ and there are states q_1, \ldots, q_{n-1} such that

$$q \stackrel{\alpha_1}{\rightarrow} q_1 \qquad q_1 \stackrel{\alpha_2}{\rightarrow} q_2 \qquad q_2 \stackrel{\alpha_3}{\rightarrow} q_3 \qquad \dots \qquad q_{n-1} \stackrel{\alpha_n}{\rightarrow} q'$$

Paths in NFAs

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

For a word w, we write

$$q \xrightarrow{w} q'$$

if $w = \alpha_1 \cdots \alpha_n$ for some $\alpha_1, \ldots, \alpha_n \in (\Sigma \cup \{\lambda\})$ and there are states q_1, \ldots, q_{n-1} such that

$$q \stackrel{\alpha_1}{\rightarrow} q_1 \qquad q_1 \stackrel{\alpha_2}{\rightarrow} q_2 \qquad q_2 \stackrel{\alpha_3}{\rightarrow} q_3 \qquad \dots \qquad q_{n-1} \stackrel{\alpha_n}{\rightarrow} q'$$

Theorem: $q \xrightarrow{w} q' \iff (q, w) \vdash^* (q', \lambda)$.

The **language accepted by** NFA $M = (Q, \Sigma, \delta, S, F)$ is $L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q_0 \in S, \ q \in F \}$ $= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q_0 \in S, \ q \in F \}$

The **language accepted by** NFA $M = (Q, \Sigma, \delta, S, F)$ is $L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q_0 \in S, \ q \in F \}$ $= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q_0 \in S, \ q \in F \}$

Paths are not unique!

The **language accepted by** NFA $M = (Q, \Sigma, \delta, S, F)$ is $L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q_0 \in S, \ q \in F \}$ $= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q_0 \in S, \ q \in F \}$

Paths are not unique! Paths for input word ab:

The **language accepted by** NFA $M = (Q, \Sigma, \delta, S, F)$ is $L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q_0 \in S, \ q \in F \}$ $= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q_0 \in S, \ q \in F \}$

Paths are not unique! Paths for input word *ab*:

$$(q_0, ab) \vdash (q_1, b) \vdash (q_1, \lambda)$$

 $(q_0, ab) \vdash (q_1, b) \vdash (q_2, \lambda)$
 $(q_2, ab) \vdash (q_0, b) \vdash (q_1, b) \vdash (q_1, \lambda)$
 $(q_2, ab) \vdash (q_0, b) \vdash (q_1, b) \vdash (q_2, \lambda)$

The **language accepted by** NFA $M = (Q, \Sigma, \delta, S, F)$ is $L(M) = \{ w \in \Sigma^* \mid (q_0, w) \vdash^* (q, \lambda) \text{ with } q_0 \in S, \ q \in F \}$ $= \{ w \in \Sigma^* \mid q_0 \xrightarrow{w} q \text{ with } q_0 \in S, \ q \in F \}$

Paths are not unique! Paths for input word *ab*:

 $\begin{array}{ll} (q_0, ab) \vdash (q_1, b) \vdash (q_1, \lambda) & (\text{ends in accepting state}) \\ (q_0, ab) \vdash (q_1, b) \vdash (q_2, \lambda) & \\ (q_2, ab) \vdash (q_0, b) \vdash (q_1, b) \vdash (q_1, \lambda) & (\text{ends in accepting state}) \\ (q_2, ab) \vdash (q_0, b) \vdash (q_1, b) \vdash (q_2, \lambda) & \end{array}$

One accepting path suffices! So ab is accepted.

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

Construction Let $N = (Q, \Sigma, \delta, S, F)$ be an NFA.

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

Construction

Let $N = (Q, \Sigma, \delta, S, F)$ be an NFA.

Define M the be obtained from N as follows

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

Construction

Let $N = (Q, \Sigma, \delta, S, F)$ be an NFA.

Define M the be obtained from N as follows

• add a fresh state q_0 ,

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

Construction

Let $N = (Q, \Sigma, \delta, S, F)$ be an NFA.

Define M the be obtained from N as follows

- add a fresh state q₀,
- add transitions $q_0 \stackrel{\lambda}{
 ightarrow} q$ for every $q \in S$, and

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

Construction

Let $N = (Q, \Sigma, \delta, S, F)$ be an NFA.

Define *M* the be obtained from *N* as follows

- add a fresh state q₀,
- add transitions $q_0 \stackrel{\lambda}{
 ightarrow} q$ for every $q \in S$, and
- make q₀ the only starting state of M.

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

Construction

Let $N = (Q, \Sigma, \delta, S, F)$ be an NFA.

Define M the be obtained from N as follows

- add a fresh state q₀,
- add transitions $q_0 \stackrel{\lambda}{
 ightarrow} q$ for every $q \in S$, and
- make q₀ the only starting state of M.

Then *M* has a single starting state and L(N) = L(M).

For every NFA *M* there is an NFA *N* such that L(M) = L(N) and *N* has a **single starting state**.

Construction

Let $N = (Q, \Sigma, \delta, S, F)$ be an NFA.

Define M the be obtained from N as follows

- add a fresh state q₀,
- add transitions $q_0 \stackrel{\lambda}{
 ightarrow} q$ for every $q \in S$, and
- make q₀ the only starting state of M.

Then *M* has a single starting state and L(N) = L(M).

Convention

We denote NFAs $(Q, \Sigma, \delta, S, F)$ with a single starting state $S = \{q_0\}$ by $(Q, \Sigma, \delta, q_0, F)$.

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Idea: state of DFA = set of all states the NFA can be in

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Idea: state of DFA = set of all states the NFA can be in

We construct a DFA $N = (Q', \Sigma, \delta', q'_0, F')$ where

$$Q' = \delta'(X, a) = q'_0 = F' =$$

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Idea: state of DFA = set of all states the NFA can be in

We construct a DFA $N = (Q', \Sigma, \delta', q'_0, F')$ where

$$Q' = 2^{Q} = \{ X \mid X \subseteq Q \}$$
$$\delta'(X, a) =$$
$$q'_{0} =$$
$$F' =$$

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Idea: state of DFA = set of all states the NFA can be in

We construct a DFA $N = (Q', \Sigma, \delta', q'_0, F')$ where

$$egin{aligned} & Q' = 2^Q = \{X \mid X \subseteq Q\} \ & \delta'(X,a) = \{q' \in Q \mid q \xrightarrow{a}, q' ext{ for some } q \in X\} \ & q'_0 = \ & F' = \end{aligned}$$
DFAs and NFAs are Equally Expressive

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Idea: state of DFA = set of all states the NFA can be in

We construct a DFA $N = (Q', \Sigma, \delta', q'_0, F')$ where

$$egin{aligned} & Q' = 2^Q = \{X \mid X \subseteq Q\} \ & \delta'(X,a) = \{q' \in Q \mid q \xrightarrow{a} q' ext{ for some } q \in X\} \ & q'_0 = \{q' \in Q \mid q \xrightarrow{\lambda} q' ext{ for some } q \in S\} \ & F' = \end{aligned}$$

DFAs and NFAs are Equally Expressive

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Idea: state of DFA = set of all states the NFA can be in We construct a DFA $N = (Q', \Sigma, \delta', q'_0, F')$ where

$$Q' = 2^{Q} = \{X \mid X \subseteq Q\}$$

$$\delta'(X, a) = \{q' \in Q \mid q \xrightarrow{a} q' \text{ for some } q \in X\}$$

$$q'_{0} = \{q' \in Q \mid q \xrightarrow{\lambda} q' \text{ for some } q \in S\}$$

$$F' = \{X \subseteq Q \mid X \cap F \neq \emptyset\}$$

DFAs and NFAs are Equally Expressive

Theorem

A language *L* is accepted by a NFA \iff *L* is regular.

Construction (Powerset)

Let $M = (Q, \Sigma, \delta, S, F)$ be a NFA.

Idea: state of DFA = set of all states the NFA can be in We construct a DFA $N = (Q', \Sigma, \delta', q'_0, F')$ where

$$Q' = 2^{Q} = \{X \mid X \subseteq Q\}$$

$$\delta'(X, a) = \{q' \in Q \mid q \xrightarrow{a} q' \text{ for some } q \in X\}$$

$$q'_{0} = \{q' \in Q \mid q \xrightarrow{\lambda} q' \text{ for some } q \in S\}$$

$$F' = \{X \subseteq Q \mid X \cap F \neq \emptyset\}$$

For every $w \in \Sigma^*$ and $X \subseteq Q$ it holds that

 $X \xrightarrow{w} X'$ in $N \iff X' = \{q' \mid q \in X, q \xrightarrow{w} q' \text{ in } M\}$ From this property it follows that L(N) = L(M).

Given is the following NFA:

Construct a DFA that accepts the same language.

Theorem

If *L* is regular, then its reverse L^R is regular.

Theorem

If *L* is regular, then its reverse L^R is regular.

Construction

Let *L* be a regular language.

Theorem

If *L* is regular, then its reverse L^R is regular.

Construction

Let *L* be a regular language.

Then there is an NFA $M = (Q, \Sigma, \delta, S, F)$ with L(M) = L.

Theorem

If *L* is regular, then its reverse L^R is regular.

Construction

Let *L* be a regular language.

Then there is an NFA $M = (Q, \Sigma, \delta, S, F)$ with L(M) = L.

Let *N* be the NFA obtained from *M* by

Theorem

If L is regular, then its reverse L^R is regular.

Construction

Let *L* be a regular language.

Then there is an NFA $M = (Q, \Sigma, \delta, S, F)$ with L(M) = L.

Let *N* be the NFA obtained from *M* by

reversing all arrows (transitions),

Theorem

If L is regular, then its reverse L^R is regular.

Construction

Let *L* be a regular language.

Then there is an NFA $M = (Q, \Sigma, \delta, S, F)$ with L(M) = L.

Let *N* be the NFA obtained from *M* by

- reversing all arrows (transitions),
- exchanging starting states S and final states F.

Theorem

If L is regular, then its reverse L^R is regular.

Construction

Let *L* be a regular language.

Then there is an NFA $M = (Q, \Sigma, \delta, S, F)$ with L(M) = L.

Let *N* be the NFA obtained from *M* by

reversing all arrows (transitions),

exchanging starting states S and final states F.
 Then we have

$$q \xrightarrow{w} q'$$
 in $M \iff q' \xrightarrow{w^R} q$ in N

Theorem

If L is regular, then its reverse L^R is regular.

Construction

Let *L* be a regular language.

Then there is an NFA $M = (Q, \Sigma, \delta, S, F)$ with L(M) = L.

Let *N* be the NFA obtained from *M* by

reversing all arrows (transitions),

exchanging starting states S and final states F.
Then we have

$$q \xrightarrow{w} q'$$
 in $M \iff q' \xrightarrow{w^{R}} q$ in N

Since starting and final states are swapped, it follows that $w \in L(M) \iff w^R \in L(N)$ Given is the following NFA:

Construct an NFA that accepts the reverse language:

Given is the following NFA:

Construct an NFA that accepts the reverse language:

