Automata Theory :: Words \& Languages

Jörg Endrullis

Vrije Universiteit Amsterdam

Words

Word $=$ finite sequence of symbols from an alphabet Σ.

- notation for symbols: a, b, c, \ldots
- notation for words: u, v, w, x, y, z
$\square a \in \Sigma$ means a is a symbol from the alphabet Σ

We write λ for the empty word.
Important: λ is not a letter of the alphabet!

In programming, words are called strings.
Then λ is the empty string " " (has length 0).

Programs are Words

Everything stored on a computer is a word (a sequence of bits).
A bit can either be 0 or 1 . So the alphabet is $\Sigma=\{0,1\}$.

So, in particular, a computer program is a word.
From an abstract point of view, a program

- takes a words as input
- produces a word as output

A program can be given itself as input.
For instance, you can do
/bin/cat /bin/cat
in Linux.

Operations on Words

Concatenation
If $v=a_{1} \cdots a_{n}$ and $w=b_{1} \cdots b_{m}$, then

$$
v w=a_{1} \cdots a_{n} b_{1} \cdots b_{m}
$$

The concatenation of $a b b$ and $b a$ is $a b b b a$.

Length

If $v=a_{1} \cdots a_{n}$, then $|v|=n$.
The length can be defined inductively:

$$
|\lambda|=0 \quad|v a|=|v|+1
$$

The length of $a b b b a$ is $|a b b b a|=5$.

Operations on Words

Power

The power v^{k} consists of k concatenations of v 's:

$$
v^{0}=\lambda \quad v^{k+1}=v^{k} v
$$

Let $w=a b a$. Then

$$
w^{0}=\lambda \quad w^{1}=a b a \quad w^{2}=a b a a b a \quad w^{3}=a b a a b a a b a
$$

Reverse

The reverse of $a_{1} \cdots a_{n}$ is

$$
\left(a_{1} \cdots a_{n}\right)^{R}=a_{n} \cdots a_{1}
$$

The reverse can be inductively defined

$$
\lambda^{R}=\lambda
$$

$$
(v a)^{R}=a\left(v^{R}\right)
$$

The reverse of $a b c b$ is $b c b a$.

Languages

Formal Languages

A formal language is a set of words.

A (formal) language L is a subset of Σ^{*}, that is, $L \subseteq \Sigma^{*}$. Here Σ^{*} is the set of all words over Σ.

The set of all parseable C programs form a language.
$\{a b, a a b, b b a a a b b\}$ is a finite language over $\Sigma=\{a, b\}$
$\left\{a b^{n} a \mid n \geq 1\right\}$ is an infinite language over $\Sigma=\{a, b\}$: $\{a b a, ~ a b b a, ~ a b b b a, ~ a b b b b a, \ldots\}$
$\left\{a^{n} b^{n} \mid n \geq 0\right\}$ is an infinite language over $\Sigma=\{a, b\}$:
$\{\lambda, a b, a a b b, a a a b b b, a a a a b b b b, \ldots\}$

Operations on Languages

Set operations

A language is a set of words. So the usual set operations have meaning for languages:

$$
\begin{gathered}
\in, \subseteq, \cap, \cup, \backslash, \ldots \\
b a \in\{a, a b a, b a\} \quad a b \notin\{a, a b a, b a\} \\
\{a, b a\} \subseteq\{a, a b a, b a\} \quad\{a, b\} \nsubseteq\{a, a b a, b a\} \\
\{a, a b a, b a\} \cap\{a, a b, b a\}=\{a, b a\} \\
\{a, a b a, b a\} \cup\{a, a b, b a\}=\{a, a b, a b a, b a\} \\
\{a, a b a, b a\} \backslash\{a, a b, b a\}=\{a b a\}
\end{gathered}
$$

Operations on Languages

Complement

The complement $\bar{L}=$ all words that are not in the language L :

$$
\bar{L}=\Sigma^{*} \backslash L
$$

For $\Sigma=\{a\}$ and $L=\{a, a a a\}$. Then $\bar{L}=\{\lambda, a a\} \cup\left\{a^{n} \mid n \geq 4\right\}$.

Reverse

The reverse of a language L is

$$
L^{R}=\left\{x^{R} \mid x \in L\right\}
$$

The reverse of $L=\{\lambda, a b, b b a b a\}$ is $L^{R}=\{\lambda, b a, a b a b b\}$.

Operations on Languages

Concatenation

The concatenation of languages L_{1} and L_{2} is defined as

$$
L_{1} L_{2}=\left\{x y \mid x \in L_{1} \wedge y \in L_{2}\right\}
$$

Let $L_{1}=\{a, b b\}$ and $L_{2}=\{a b, b a\}$. Then $L_{1} L_{2}=\{a a b, a b a, b b a b, b b b a\}$

Power

The n-th power of a language L is defined by induction on n :

$$
L^{0}=\{\lambda\} \quad L^{n+1}=L^{n} L \quad(n \geq 0)
$$

Let $L=\{a, b b\}$. Then
$L^{2}=\{a a, a b b, b b a, b b b b\}$
$L^{3}=\{a a a, a a b b, a b b a, a b b b b, b b a a, b b a b b, b b b b a, b b b b b b\}$

Operations on Languages

Attention: $L^{2}=\{u v \mid u, v \in L\} \neq\{u u \mid u \in L\}$!

Kleene star

$$
\begin{aligned}
L^{*} & =\bigcup_{i=0}^{\infty} L^{i}=L^{0} \cup L^{1} \cup L^{2} \cup L^{3} \cup \cdots \\
L^{+} & =\bigcup_{i=1}^{\infty} L^{i}=L^{1} \cup L^{2} \cup L^{3} \cup \cdots
\end{aligned}
$$

Thus $L^{*}=L^{+} \cup\{\lambda\}$.
Let $L=\{a, b b\}$. Then
$L^{*}=\{\lambda, a, b b, a a, a b b, b b a, b b b b, a a a, a a b b, a b b a, a b b b b \ldots\}$
L^{*} are all the words that you can build from 'building blocks' L.

Exercise

Let

- $\Sigma=\{a, b\}$
- $L=\left\{a b^{n} \mid n \geq 0\right\}$

Describe the following languages as sets:

$$
\begin{aligned}
L^{R} & =\left\{b^{n} a \mid n \geq 0\right\} \\
\bar{L} & =\{\lambda\} \cup\left\{b w \mid w \in \Sigma^{*}\right\} \cup\left\{\text { awau } \mid w, u \in \Sigma^{*}\right\}
\end{aligned}
$$

Set notation is not ideal to describe languages.

