Automata Theory :: Words & Languages

Jorg Endrullis

Vrije Universiteit Amsterdam

Words

Word = finite sequence of symbols from an alphabet X.

m notation for symbols: a, b, ¢, ...
® notation for words: u, v, w, x, y,z

B g€ X means ais a symbol from the alphabet &

Words

Word = finite sequence of symbols from an alphabet X.

m notation for symbols: a, b, ¢, ...
® notation for words: u, v, w, x, y,z

B g€ X means ais a symbol from the alphabet &

We write A for the empty word.

Words

Word = finite sequence of symbols from an alphabet X.

m notation for symbols: a, b, ¢, ...
® notation for words: u, v, w, x, y,z

B g€ X means ais a symbol from the alphabet &

We write A for the empty word.

Important: A is not a letter of the alphabet!

Words

Word = finite sequence of symbols from an alphabet X.

m notation for symbols: a, b, ¢, ...
® notation for words: u, v, w, x, y,z

B g€ X means ais a symbol from the alphabet &

We write A for the empty word.

Important: A is not a letter of the alphabet!

In programming, words are called strings.

Then A is the empty string "" (has length 0).

Programs are Words

Everything stored on a computer is a word (a sequence of bits).

A bit can either be 0 or 1. So the alphabetis £ ={0,1}.

Programs are Words

Everything stored on a computer is a word (a sequence of bits).

A bit can either be 0 or 1. So the alphabetis £ ={0,1}.

So, in particular, a computer program is a word.

From an abstract point of view, a program
® takes a words as input

® produces a word as output

Programs are Words

Everything stored on a computer is a word (a sequence of bits).

A bit can either be 0 or 1. So the alphabetis £ ={0,1}.

So, in particular, a computer program is a word.

From an abstract point of view, a program
® takes a words as input

® produces a word as output

A program can be given itself as input.

For instance, you can do
/bin/cat /bin/cat
in Linux.

Operations on Words

Concatenation
lfv=ay---aand w = by - - - by, then

VW= aj - anby - bm

The concatenation of abb and ba is abbba.

Operations on Words

Concatenation
lfv=ay---aand w = by - - - by, then

VW= aj - anby - bm

The concatenation of abb and ba is abbba.

Length
If v=ay---ap then|v|=n.
The length can be defined inductively:
Al=0 lval = |v| + 1

The length of abbba is |abbbal = 5.

Operations on Words

Power
The power v/ consists of k concatenations of v’s:

VO =A Vk+1 — VkV

Let w = aba. Then
w® =\ w'=aba w®=abaaba w?> = abaabaaba

Operations on Words

Power
The power v/ consists of k concatenations of v’s:
k+1 K

v0 = A v — yKy

Let w = aba. Then
w® =\ w'=aba w®=abaaba w?> = abaabaaba

Reverse
The reverse of a; - - - ap is
)Fw’

(31...an =apn-- a4

The reverse can be inductively defined

AR =2 (va)f = a(vM)

The reverse of abcb is beba.

Languages

Formal Languages

A formal language is a set of words.

Formal Languages

A formal language is a set of words.

A (formal) language L is a subset of £*, thatis, L C Z*.

Here =* is the set of all words over X.

Formal Languages

A formal language is a set of words.

A (formal) language L is a subset of £*, thatis, L C Z*.

Here =* is the set of all words over X.

The set of all parseable C programs form a language.

Formal Languages

A formal language is a set of words.

A (formal) language L is a subset of £*, thatis, L C Z*.

Here =* is the set of all words over X.

The set of all parseable C programs form a language.

{ab, aab, bbaaabb} is a finite language over £ ={a, b}

Formal Languages
A formal language is a set of words.
A (formal) language L is a subset of £*, thatis, L C Z*.
Here Z* is the set of all words over L.
The set of all parseable C programs form a language.
{ab, aab, bbaaabb} is a finite language over £ ={a, b}

{ab"a| n>1}is an infinite language over £ = {a, b}:
{aba, abba, abbba, abbbba, ...}

Formal Languages
A formal language is a set of words.
A (formal) language L is a subset of £*, thatis, L C Z*.
Here Z* is the set of all words over L.
The set of all parseable C programs form a language.
{ab, aab, bbaaabb} is a finite language over £ ={a, b}

{ab"a| n>1}is an infinite language over £ = {a, b}:
{aba, abba, abbba, abbbba, ...}

{a"b" | n > 0}is an infinite language over * ={a, b}:
{A, ab, aabb, aaabbb, aaaabbbb, ...}

Operations on Languages

Set operations
A language is a set of words. So the usual set operations have

meaning for languages:
el gl m! U! \! .

Operations on Languages

Set operations
A language is a set of words. So the usual set operations have

meaning for languages:
el gl m! U! \! .

ba € { a, aba, ba} ab ¢ { a, aba, ba}

Operations on Languages

Set operations
A language is a set of words. So the usual set operations have

meaning for languages:
61 ga ma U! \5

ba € { a, aba, ba} ab ¢ { a, aba, ba}

{a,ba} C{a,aba,ba} {a,b} Z {a,aba,ba}

Operations on Languages

Set operations
A language is a set of words. So the usual set operations have
meaning for languages:
el g’ m’ U! \! .
ba € { a, aba, ba} ab ¢ { a, aba, ba}
{a,ba} C{a,aba,ba} {a,b} Z {a,aba,ba}

{a,aba,ba}n{a,ab,ba} ={a,ba}

Operations on Languages

Set operations
A language is a set of words. So the usual set operations have

meaning for languages:
61 ga ma U! \5

ba € { a, aba, ba} ab ¢ { a, aba, ba}
{a,ba} C{a,aba,ba} {a,b} Z {a,aba,ba}
{a,aba,ba}n{a,ab,ba} ={a,ba}

{a,aba,ba}u{a,ab,ba}=1{a,ab,aba, ba}

Operations on Languages

Set operations
A language is a set of words. So the usual set operations have

meaning for languages:
61 ga ma U! \5

ba € { a, aba, ba} ab ¢ { a, aba, ba}
{a,ba} C{a,aba,ba} {a,b} Z {a,aba,ba}
{a,aba,ba}n{a,ab,ba} ={a,ba}
{a,aba,ba}u{a,ab,ba}=1{a,ab,aba, ba}

{a,aba,ba}\{a,ab,ba} ={aba}

Operations on Languages

Complement
The complement L = all words that are not in the language L:
L=3"\L

ForZ ={a}and L={a,aaa). ThenL ={A,aalu{a” | n>4).

Operations on Languages

Complement
The complement L = all words that are not in the language L:
L=3"\L

ForZ ={a}and L={a,aaa). ThenL ={A,aalu{a” | n>4).

Reverse
The reverse of a language L is

LR ={xF|xel}

The reverse of L = {A, ab, bbaba} is LF = { A, ba, ababb}.

Operations on Languages

Concatenation
The concatenation of languages L1 and L, is defined as

Lilo={xy|xeLiNyely}

Let Ly ={a, bb}and L, ={ab, ba}. Then
LiL, ={aab, aba, bbab, bbba}

Operations on Languages

Concatenation
The concatenation of languages L1 and L, is defined as

Lilo={xy|xeLiNyely}

Let Ly ={a, bb}and L, ={ab, ba}. Then
LiL, ={aab, aba, bbab, bbba}

Power
The n-th power of a language L is defined by induction on n:

L0 ={A} JLUER — [1B]] (n>0)

Let L={a, bb}. Then
L2 = { aa, abb, bba, bbbb }
L® = { aaa, aabb, abba, abbbb, bbaa, bbabb, bbbba, bbbbbb }

Operations on Languages

Attention: L2 ={uv|u,ve L} #{uu|uec L} !

Operations on Languages

Attention: L2 ={uv|u,ve L} #{uu|uec L} !

Kleene star
= U =1uvl'vltulfu.---
i=0
Lt = UL" = L'ulPulBy.-.

Il
R

Thus L* = LT U{A}.

Let L={a,bb}. Then
L* ={A, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbbb . . .}

L* are all the words that you can build from ‘building blocks’ L.

Exercise

Let
=¥ ={ab}
m/={ab’"|n>0}

Describe the following languages as sets:

LA =

Exercise

Let
=¥ ={ab}
m/={ab’"|n>0}

Describe the following languages as sets:

LR ={b"a|n>0}

Exercise

Let
=¥ ={ab}
m/={ab’"|n>0}

Describe the following languages as sets:

LR ={b"a|n>0}
I =

Exercise

Let
=¥ ={ab}
m/={ab’"|n>0}

Describe the following languages as sets:

LR ={b"a|n>0}
L={A}

Exercise

Let
=¥ ={ab}
m/={ab’"|n>0}

Describe the following languages as sets:

LR ={b"a|n>0}
L={ANu{bw|wez*}

Exercise

Let
=¥ ={ab}
m/={ab’"|n>0}

Describe the following languages as sets:

LA ={b"aln>0}
L={N}u{bw|weZ*}Uu{awau|w,uc I*}

Exercise

Let
=¥ ={ab}
m/={ab’"|n>0}

Describe the following languages as sets:

LA ={b"aln>0}
L={N}u{bw|weZ*}Uu{awau|w,uc I*}

Set notation is not ideal to describe languages.

	Words
	Languages as Sets

