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Abstract. Our objects of study are infinite sequences and how they can
be transformed into each other. As transformational devices, we focus
here on Turing Machines, sequential finite state transducers and Mealy
Machines. For each of these choices, the resulting transducibility rela-
tion ≥ is a preorder on the set of infinite sequences. This preorder induces
equivalence classes, called degrees, and a partial order on the degrees.

For Turing Machines, this structure of degrees is well-studied and known
as degrees of unsolvability. However, in this hierarchy, all the computable
streams are identified in the bottom degree. It is therefore interesting
to study transducibility with respect to weaker computational models,
giving rise to more fine-grained structures of degrees. In contrast with
the degrees of unsolvability, very little is known about the structure of
degrees obtained from finite state transducers or Mealy Machines.

1 Introduction

In recent times, computer science, logic and mathematics have extended the fo-
cus of interest from finite data types to include infinite data types, of which the
paradigm notion is that of infinite sequences of symbols, or streams. As Democri-
tus in his adagium Panta Rhei already observed, streams are ubiquitous. Indeed
they appear in functional programming, formal language theory, in the mathe-
matics of dynamical systems, fractals and number theory, in business (financial
data streams) and in physics (signal processing).

The title of this paper is inspired by the well-known ‘degrees of unsolvabil-
ity’, described in Shoenfield[12]. Here sets of natural numbers are compared by
means of transducibility using Turing Machines (TMs). The ensuing hierarchy
of degrees of unsolvability has been widely studied in the 60’s and 70’s of the
last century and later. We use the notion of degrees of unsolvability as a guiding
analogy. In our case, we will deal with streams, noting that a set of natural
numbers (as the subject of degrees of unsolvability) is also a stream over the al-
phabet {0, 1} via its characteristic function. However, Turing Machines are too
strong for our purposes, since typically we are interested in computable streams
and they would all be identified by transducibility via Turing Machines.

We are therefore interested in studying transducibility of streams with respect
to less powerful devices. A reduction of the computational power results in a finer
structure of degrees. For transforming streams, a few choices present themselves:
(sequential) finite state transducers (FSTs) or Mealy Machines (MMs). There are
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other possibilities, for instance: morphisms, many-one-reducibility, 1-reducibility
and tt-reducibility (truth-table reducibility). The last three are more interesting
in the context of degrees of unsolvability (Turing degrees).

Let us now describe the contents of this paper. In Section 2, we start with
the formal definition of the three main notions of degrees, as generated by trans-
ducibility using Turing Machines, by sequential finite state transducers, and by
Mealy Machines. The latter two machine models will be defined formally, for Tur-
ing Machines we will suppose familiarity, making a definition superfluous. At the
end of this preliminary section, we briefly mention the possible employment of
infinitary rewriting as an alternative way of phrasing the various transductions.
The next section (Section 3) can be considered to be the heart of this paper,
with a comparison between Turing degrees and Transducer degrees (arising from
Turing Machines and finite state transducers, respectively). Here we mention a
dozen of the main properties of Turing degrees, all without the jump operator,
and compare these with the situation for Transducer degrees. This yields a num-
ber of open questions. In Section 4 we zoom in on an interesting area in the
partial order of Transducer degrees, namely the area of ‘rarefied ones’4 streams.
It turns out that the degree structure of this restricted area is already surpris-
ingly rich. Remarkably the structure of degrees of these streams requires neither
insight about finite state transducers, nor about infinite sequences. We conclude
with an extensive list of questions about Transducer degrees, see Section 5.

A general word of warning may be in order. While we think that the questions
arising from finite state transducibility of streams are fascinating, they seem to
be challenging, some might even be intractable with the current state of the art.

2 Preliminaries

We briefly introduce the dramatis personae: (sequential) finite state transducers,
Mealy Machines and Turing Machines. For a thorough introduction of finite
automata and transducers, we refer the reader to [1,11].

Let Σ be an alphabet. We use ε to denote the empty word. We use Σ∗ to
denote the set of finite words over Σ, and let Σ+ = Σ∗ \ {ε}. The set of infinite
sequences over Σ is Σω = {σ | σ : N → Σ} and we let Σ∞ = Σ∗ ∪ Σω. In
this paper, we consider only sequences over finite alphabets. Without loss of
generality we assume that the alphabets are of the form Σn = {0, 1, . . . , n− 1}
for some n ∈ N. Then there are countably many alphabets and countably many
finite state transducers over these alphabets. We write S for the set of all streams
over these alphabets, that is S =

⋃
n∈NΣ

ω
n .

2.1 Finite State Transducers and Mealy Machines

Sequential finite state transducers, also known as deterministic generalised se-
quential machines (DGSMs), are finite automata with input letters and output
words along the edges.

4 The name ‘rarefied ones’ for the stream 01001000100001 · · · occurs in [7, p.208] in
the context of dynamical systems.
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Definition 2.1. A (sequential) finite state transducer (FST) A = 〈Σ,Γ,Q, q0, δ, λ〉
consists of

(i) a finite input alphabet Σ,
(ii) a finite output alphabet Γ ,
(iii) a finite set of states Q,
(iv) an initial state q0 ∈ Q,
(v) a transition function δ : Q×Σ → Q, and
(vi) an output function λ : Q×Σ → Γ ∗.

Whenever Σ and Γ are clear from the context we write A = 〈Q, q0, δ, λ〉.

A finite state transducer reads an input stream letter by letter and produces a
prefix of the output stream in each step.

Definition 2.2. Let A = 〈Σ,Γ,Q, q0, δ, λ〉 be a finite state transducer. We ho-
momorphically extend the transition function δ to Q×Σ∗ → Q by

δ(q, ε) = q δ(q, au) = δ(δ(q, a), u)

for q ∈ Q, a ∈ Σ, u ∈ Σ∗, and the output function λ to Q×Σ∞ → Γ∞ by

λ(q, ε) = ε λ(q, au) = λ(q, a) · λ(δ(q, a), u)

for q ∈ Q, a ∈ Σ, u ∈ Σ∞.

A Mealy Machine is an FST that outputs precisely one letter in each step.

Definition 2.3. A Mealy Machine (MM) is an FST A = 〈Σ,Γ,Q, q0, δ, λ〉 such
that |λ(q, a)| = 1 for every q ∈ Q and a ∈ Σ.

For convenience, we sometimes consider the output function of a Mealy Machine
as having type λ : Q×Σ → Γ .

2.2 Degrees of Transducibility

We define the partial orders of degrees of streams arising from Turing Machines,
finite state transducers and Mealy Machines. First, we define transducibility
relations ≥TM, ≥FST and ≥MM on the set of streams.

Definition 2.4. Let Σ,Γ be finite alphabets, and σ ∈ Σω, τ ∈ Γω streams. For
an FST A = 〈Σ,Γ,Q, q0, δ, λ〉, we write σ ≥A τ if τ = λ(q0, σ).

(i) We write σ ≥FST τ if there exists an FST A such that σ ≥A τ .

(ii) We write σ ≥MM τ if there exists an MM A such that σ ≥A τ .

(iii) We write σ ≥TM τ if τ is computable by a TM with oracle σ.

Note that the relations ≥TM, ≥FST and ≥MM are preorders on S. Each of
these preorders ≥ induces a partial order of ‘degrees’, the equivalence classes
with respect to ≥ ∩ ≤. We denote equivalence using ≡.
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Definition 2.5. Let T ∈ {FST, MM, TM}. We define ≡T as the equivalence
relation ≥T ∩ ≤T. The T-degree [σ]T of a stream σ ∈ S is the equivalence class
of σ with respect to ≡T, that is, [σ]T = {τ ∈ S | σ ≡T τ}. For a set of streams
X ⊆ S, we write [X]T for the set of degrees {[σ]T | σ ∈ X}.

The T-degrees of transducibility is the partial order 〈[S]T,≥T〉 induced by
the preorder ≥T on S, that is, for σ, τ ∈ S we have [σ]T ≥T [τ ]T ⇐⇒ σ ≥T τ .
We introduce some notation:

– We use 0T to denote the bottom degree of 〈[S]T,≥T〉, that is, the unique
degree a ∈ [S]T such that a ≤T b for every b ∈ [S]T.

– A minimal cover of a degree a is a degree b such that a <T b and there
exists no degree strictly between a and b.

– An atom is a minimal cover of the bottom degree 0T.

In the sequel, we will refer to

– TM-degrees 〈[S]TM,≥TM〉 as Turing degrees,

– FST-degrees 〈[S]FST,≥FST〉 as Transducer degrees and

– MM-degrees 〈[S]MM,≥MM〉 as Mealy degrees.

Machine models via infinitary rewriting. As we have seen, degrees of trans-
ducibility depend on the machine used. It is worth remarking that describing
such machine models, including the transduction of streams, can be conveniently
phrased in the framework of rewriting, in particular infinitary rewriting [6,5], in-
cluding infinitary λ-calculus.

Clearly, Turing Machines are tantamount to finite λ-terms, as to their ex-
pressive power to define computable functions. Interestingly, oracle Turing Ma-
chines can also be described in λ-calculus, this time in infinitary λ-calculus.
For a set X ⊆ N, we use X to denote the infinite λ-term obtained using it-
erated pairing that describes the characteristic function of X. For example, if
X = {1, 2, 4, 7, . . .} then the infinite λ-term X is

X = 〈0, 〈1, 〈1, · · · 〉〉〉 = λz. z0(λz. z1(λz. z1(· · · )))

Here 〈p, q〉 = λz. zpq is the usual pairing in λ-calculus. Turing reducibility is
then a matter of infinitary rewriting→→→: for X,Y ⊆ N, X is Turing reducible to
Y , X ≤TM Y , if there exists a finite λ-term M such that MY →→→ X. Sequential
finite state transducers and Mealy Machines can be described using restricted
forms of λ-terms M or infinitary first-order rewriting.

3 Comparison

In this section, we compare the structure of degrees of transducibility arising from
Turing Machines with that obtained from sequential finite state transducers. We
will also mention a few facts about the degrees obtained from Mealy Machines.
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All three partial orders have very different structural properties, to wit:

– In contrast to the Mealy degrees, there exist atoms (minimal non-zero de-
grees) in the Turing degrees and Transducer degrees.

– The Turing degrees and Mealy degrees form semi-lattices in contrast to the
Transducer degrees for which there exist pairs of degrees without supremum.

Turing degrees. Our comparison will be guided by questions that have been
studied for Turing degrees, and we start by recalling some of the classical results.
The bottom degree 0TM of this hierarchy consists of all computable streams.

In the following theorem, we summarise a few known results about Turing
degrees. For each result we indicate on the right using " , % and ? whether
the property holds, does not hold or is open for Transducer degrees, respectively.
For further reading on Turing degrees we refer the reader to [12,13,16,8,15,9].

Theorem 3.1. For Turing degrees we have:

(i) (Kleene, Post) Every degree is countably infinite. "

(ii) (Kleene, Post) There are 2ℵ0 distinct degrees. "

(iii) (Kleene, Post) For every degree a, a ↓ = {b | a ≥ b} is countable. "
(iv) (Kleene, Post) For every degree a, the set a ↑ = {b | b ≥TM a} has cardi-

nality 2ℵ0 . "

(v) (Spector) There exists an atom. "

(vi) (Spector) Every degree has a minimal cover. ?

(vii) (Kleene, Post) Every finite set of degrees has a least upper bound. %
(viii) (Kleene, Post, Spector) No infinite ascending sequence of degrees has a least

upper bound. ?

(ix) (Kleene, Post) There are pairs of degrees without greatest lower bound. "

(x) (Kleene, Post) For every degree 6= 0 there exists an incomparable degree. "

(xi) (Sacks) Every countable partially ordered set can be embedded. ?
(xii) (Sacks) The recursively enumerable degrees are dense: whenever a < c for

recursively enumerable degrees a, c, then there exists a recursively enumerable
degree b such that a < b < c. %

(xiii) (Simpson) The first-order theory of [S]TM in the language 〈≥,=〉 is recur-
sively isomorphic to that of true second order arithmetic. ?

The items (viii) and (ix) of Theorem 3.1 are corollaries of the following famous
result by Kleene, Post and Spector.

Theorem 3.2 (Kleene, Post, Spector [12]). Let a0 <TM a1 <TM · · · be an
infinite ascending sequence of Turing degrees. Then there exist Turing degrees
b, c such that b and c are upper bounds for {an}n∈N, and there is no Turing
degree that is both an upper bound for {an}n∈N and a lower bound for {b, c}.

The structure of Turing degrees is extremely complicated. Shore [13] dis-
cussed some conjectures about this structure due to Sacks, such as:
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(C4) A partially ordered set P is embeddable in the Turing degrees if and only if P
has at most continuum cardinality, and each downward cone is at most count-
able.

(C5) If S is a set of independent Turing degrees of cardinality less than continuum,
then there exists a degree d 6∈ S such that S ∪ {d} is an independent set of
degrees.

The first conjecture is still open5, and the second was shown to be independent
of the axioms of ZFC set theory! We expect that the structure of Transducer
degrees is more tractable, less complicated than the structure of Turing degrees.

Transducer degrees. Sequential finite state transducers are less powerful than
Turing machines, and consequently, the Transducer degrees are more fine-grained
than the Turing degrees. The Transducer degrees provide an interesting com-
plexity measure for streams. On the one hand, transducers are ‘weak enough’ to
exhibit a rich structure within the computable streams (which trivialise in the
bottom degree of the Turing degrees). On the other hand, finite state transduc-
tion generalises several usual transformations in dealing with streams, such as
alphabet renaming, insertion and removal of elements, or applying a morphism
that substitutes words for letters.

The structure of the Transducer degrees is largely unexplored territory with a
large number of interesting open questions. An initial study of this partial order
of degrees has been carried out in [4,3]. The bottom degree 0 of the hierarchy
is formed by the ultimately periodic streams. There exist infinite ascending and
infinite descending sequences, and thus the hierarchy is not well-founded. It is
not difficult to see that there exists no maximal degree, and a set of degrees
has an upper bound if and only if the set is countable. The cardinality results
(i)–(iv) of Theorem 3.1 hold also for the Transducer degrees. In [4] it has been
shown that the degree of the stream

Π = 1101001000100001000001 . . .

is an atom (a minimal non-zero degree) and hence Theorem 3.1(v) is valid for
the Transducer degrees. We refer to Section 4 for more on atom degrees. How-
ever, it is open whether every degree has a minimal cover (compare with The-
orem 3.1(vi)). Analogously to the degrees of unsolvability, we call a Transducer
degree recursively enumerable if it contains a recursively enumerable stream. As
a consequence of the degree of Π being an atom, it follows that the recursively
enumerable Transducer degrees are not dense, and hence Theorem 3.1(xii) fails
for the Transducer degrees. However, it is interesting and open whether there
exist dense substructures (e.g. dense intervals).

Theorem 3.1(ix) holds for the Transducer degrees: there exist pairs of de-
grees without a greatest lower bound. In contrast to the Turing degrees, there
also exist pairs of Transducer degrees without a least upper bound and thus The-
orem 3.1(vii) fails. It is open whether there exist infinite ascending sequences of

5 The conjecture was open at the time of Shore [13] and it has remained open to the
best knowledge of the authors.
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Transducer degrees with a least upper bound (Theorem 3.1(viii)). The validity of
Theorem 3.1(x) for Transducer degrees (the existence of incomparable degrees)
follows immediately from the fact that finite state transducers are weaker than
Turing Machines. Theorem 3.1(xi) is open for Transducer degrees. It is even
open whether every finite distributive lattice can be embedded. Finally, also the
complexity of the first-order theory of Transducer degrees in the language 〈≥,=〉
is open (compare with Theorem 3.1(xiii)).

Mealy degrees. The hierarchy of degrees induced by transducibility via Mealy
Machines, has been studied by Rayna in [10] and Belov in [2]. We briefly mention
a few interesting facts about this hierarchy. The bottom degree 0 of consists of the
ultimately periodic streams, just as for the Transducer degrees. Except for the
common bottom degree, the Mealy degrees and Transducer degrees exhibit very
different properties. In the Mealy degrees, every stream σ 6∈ 0 admits an infinite
descending chain, while there exist atom degrees in the Transducer degrees. In
the Mealy degrees, the degree of a stream σ 6∈ 0 is always strictly lower than the
degree of every strict suffix of σ. In contrast, the Transducer degree of a stream
is invariant under removal and insertion of finitely many elements. In the Mealy
degrees, every finite set of degrees has a least upper bound.

4 Atoms and Polynomials

In this section, we want to highlight an intriguing connection between finite state
transduction and number theory.

0
ultimately periodic streams

T W

sup? upper bound

atoms〈n〉 〈n2〉 〈pk〉

〈nk〉
? polynomials

of fixed order k ≥ 3?

?

?

Fig. 1. The partial order of Transducer degrees. Question marks indicate open problems.
Here pk is a polynomial of order k, see Section 4 for the form of this polynomial. The
degree of 〈pk〉 is an atom and all other polynomials of order k can be transduced to pk.
Note that 〈nk〉 is not an atom for k ≥ 3.
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We will consider the following ‘rarefied ones’ streams: for f : N → N we use
〈f〉 ∈ 2ω to denote the sequence

〈f〉 =

∞∏
i=0

0f(i)1 = 0f(0) 10f(1) 10f(2) · · · ,

Note that for every stream σ ∈ {0, 1}ω there exists f : N→ N such that σ = 〈f〉,
and for every stream σ ∈ S there exists f : N→ N such that σ ≡FST 〈f〉.

In general, it is difficult to characterise the set of transducts of a sequence 〈f〉.
We will therefore consider the case where the function f is a polynomial. Sur-
prisingly, even for this simple class of functions, there is a rich structure in the
degrees, and we reach very soon a large terra incognita.

Let us lead up to the situation as described in Figure 1 by the following step-
wise example; afterwards we present the technical key to establish these facts.
In the sequel, when speaking about polynomials, we always mean polynomials
with non-negative integer coefficients.

(i) Linear functions.

All linear functions 〈an + b〉 are equivalent to 〈n〉, and the degree of 〈n〉 is
an atom. For example, the following transducer transforms 〈2n+ 1〉 to 〈n〉:

q0 q1
0|ε

0|0 1|1

1|1

The way back from 〈n〉 to 〈2n + 1〉 is an easy exercise. The proof that the
degree of 〈n〉 is an atom requires an understanding of the method explained
below.

(ii) Quadratic functions.

Every quadratic function 〈an2 + bn + c〉 transduces to 〈n2〉 and the degree
of 〈n2〉 is an atom. This has been shown in [3] using the technical analysis
described below. We expect that the same argument yields that 〈n2〉 also
transduces to 〈an2 + bn+ c〉, and hence all quadratic polynomials have the
same degree. We wonder whether there is a relation to the well-known geo-
metrical fact that the graphs of quadratic polynomials, parabolas, coincide
up to translation and scaling.

Let’s work out a typical example which gives a feeling for the capabilities of
transducers. We show that 〈2n2 + n+ 3〉 ≥FST 〈n2〉:

〈2n2 + n+ 3〉 ≡ 〈2n2 + n〉 subtracting a constant

≡ 〈2(n+ 1)2 + (n+ 1)〉 = 〈2n2 + 5n+ 3〉 taking the tail

≥ 〈1(2(2n)2 + 5(2n) + 3) + merging even & odd blocks
3(2(2n+ 1)2 + 5(2n+ 1) + 3)〉 multiplying odd blocks by 3

= 〈32n2 + 64n〉 ≡ 〈32(n+ 1)2〉 adding a constant
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≡ 〈(n+ 1)2〉 division by 32

≡ 〈n2〉 prefixing 1

(iii) Cubic functions and higher order.

For polynomials of order three and higher the picture becomes much more
complicated. For k ≥ 3, the degree of 〈nk〉 is not an atom. But nevertheless
there are polynomials pk(n) of order k that do have an atom degree, namely

pk(n) = (kn+ 0)k + (kn+ 1)k + · · ·+ (kn+ (k − 1))k .

Moreover, all degrees of polynomials of order k are above or equal to this
atom degree (and hence the atom degree is unique among them). For exam-
ple, the unique atom for polynomials of order 3 is the degree of

p3(n) = (3n+ 0)3 + (3n+ 1)3 + (3n+ 2)3

= 81n3 + 81n2 + 45n+ 9 .

The results on polynomials of order 3 and higher are very recent and still
unpublished. We include then as they indicate that there is a rich structure
inside this ‘polynomial subhierarchy’.

Let us briefly discuss the technical key observations underlying these results.
A block is an occurrence of a word 100 · · · 0 in a stream. Finite state transducers
can multiply (and divide) the length of a block by any non-negative rational
number. A transducer can ‘merge’ consecutive blocks by erasing the 1 between
the blocks. Moreover, transducers have a finite number of states, so they can
multiply and merge in a periodic fashion. This is the essence of what we call
‘weighted products’, denoted by α ⊗ f . Here α is a tuple of weights and a
weight is a tuple of rational numbers. For example, let us consider f(n) = n and
α = 〈α1, α2〉 with α1 = 〈1, 2, 3, 4〉, α2 = 〈0, 1, 1〉. Then:

f · · ·0 1 2 3 4 5 6 7 8 9

α⊗ f · · ·12 5 42 10

×1 ×2 ×3

+4

×0 ×1

+1

×1 ×2 ×3

+4

×0 ×1

+1

Intuitively, the weight α1 = 〈1, 2, 3, 4〉 means that three consecutive blocks are
merged, where the length of the blocks is multiplied by 1, 2 and 3, respectively,
and finally 4 is added to the result. Likewise, the weight α2 = 〈0, 1, 1〉 means that
two consecutive blocks are merged while being multiplied by 0 and 1, respectively,
and 1 is added to the result.

Such transformations can always be realised by finite state transducers, that
is, for every f : N→ N and every tuple of weights α we have 〈f〉 ≥FST 〈α⊗ f〉.
However, the crucial observation is the following: for a certain class of functions f
this is ‘all’ that finite state transducers can do. This is the class of ‘spiralling’
functions; polynomials fall in this class.

Definition 4.1. A function f : N→ N is called spiralling if

(i) limn→∞ f(n) =∞, and
(ii) for every m ≥ 1, the function n 7→ f(n) mod m is ultimately periodic.
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Functions with the property (ii) are called ‘ultimately periodic reducible’ in [14].
Note that polynomials with non-negative integer coefficients are spiralling.

For a tuple α = 〈α0, . . . , αm〉 we define its rotation by α′ = 〈α1, . . . , αm, α0〉.

Definition 4.2. A weight is a tuple 〈a0, . . . , ak−1, b〉 ∈ Qk+1 of rational numbers
such that a0, . . . , ak−1 ≥ 0. Given a weight α = 〈a0, . . . , ak−1, b〉 and a function
f : N→ N we define α · f ∈ Q by

α · f = a0f(0) + a1f(1) + · · ·+ ak−1f(k − 1) + b .

The weight α is said to be constant whenever aj = 0 for all j ∈ N<k.

Definition 4.3. For functions f : N → N, and tuples α = 〈α0, α1, . . . , αm−1〉
of weights, the weighted product of α and f is a function α⊗ f : N→ Q that is
defined by induction on n through the following scheme of equations:

(α⊗ f)(0) = α0 · f
(α⊗ f)(n+ 1) = (α′ ⊗ S |α0|−1(f))(n) (n ∈ N)

where |αi| is the length of the tuple αi, and Sk(f) is the k-th shift of f .

The following theorem from [3] characterises up to equivalence the transducts
of spiralling sequences in terms of weighted products.

Theorem 4.4 ([3]). Let f : N→ N be spiralling, and σ ∈ 2ω. Then 〈f〉 ≥FST σ
if and only if σ ≡FST 〈α⊗ Sn0(f)〉 for some n0 ∈ N, and a tuple of weights α.

As an immediate consequence of this theorem we obtain that polynomials of
degree k are closed under transduction in the following sense.

Proposition 4.5 ([3]). Let p(n) be a polynomial of degree k with non-negative
integer coefficients, and let σ be a transduct of 〈p(n)〉 with σ /∈ 0. Then σ ≥FST

〈q(n)〉 for some polynomial q(n) of degree k with non-negative integer coeffi-
cients.

In [3], Proposition 4.5 and Theorem 4.4 are used to show that the degree of 〈n2〉
is an atom. The following theorem characterises transduction between spiralling
sequences (without the ‘up to equivalence’ of Theorem 4.4).

Theorem 4.6. Let f, g : N → N be spiralling functions. Then 〈g〉 ≥FST 〈f〉 if
and only if there exist n0,m0 ∈ N and a tuple of weights α such that

Sn0(f) = α⊗ Sm0(g) .

We expect that several questions about the structure of Transducer degrees could
be answered if we understood what preorder Sn0(f) = α ⊗ Sm0(g) induces on
spiralling functions and, in particular, on polynomials.

Even among the polynomials there seems to be a rich structure. Theorem 4.6
can be used to obtain the following two results.

Theorem 4.7. For k ≥ 3, the degree of 〈nk〉 is not an atom.

Nevertheless, it turns out that for every k ≥ 1 there exists a unique atom among
the degrees of sequences 〈p〉 where p is a polynomial of order k.
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Theorem 4.8. Let k ≥ 1. Let a0, . . . , ak−1 ≥ 1 and define

p(n) = a0(kn+ 0)k + a1(kn+ 1)k + · · ·+ ak(kn+ (k − 1)k

Then for every polynomial q of order k with non-negative integer coefficients it
holds that 〈q〉 ≥FST 〈p〉. Hence the degree of 〈p〉 is an atom (the unique atom
among polynomials of order k).

5 A Plethora of Questions

We mention a few interesting open questions about the Transducer degrees:

(1) How many atom degrees exist? Are there continuum many?

(2) Does every degree have a minimal cover?

(3) Is every degree a the greatest lower bound of a pair of degrees ( 6= a)?

(4) Are there dense intervals? That is degrees a and e with a < e such that
for all degrees b,d with a ≤ b < d ≤ e there exists c with b < c < d.

(5) Can every finite partial order be embedded in the hierarchy?

(6) Can every finite distributive lattice be embedded in the hierarchy?

(7) When does a pair of degrees have a supremum?

(8) When does a pair of degrees have an infimum?

(9) Are there infinite ascending sequences of degrees with least upper bound?

(10) Are there infinite descending sequences of degrees with greatest lower
bound?

(11) What is the structure of degrees of polynomials of order k (for fixed k ≥ 1)
with non-negative integer coefficients. Is the number of degrees finite for
every k ≥ 1?

(12) Is there a degree that has precisely two degrees below itself? This is dis-
played in Figure 2 on the right.

(13) Is there a degree that has precisely three degrees below itself: two incom-
parable degrees and the bottom degree? This is displayed in Figure 2 on
the left.

(14) How complex is the first-order theory in the language 〈≥,=〉?
(Compare with Theorem 3.1 item (xiii).)

0 0

Fig. 2. Possible structures in the hierarchy: a diamond, and a line. The arrows→ mean
transducibility ≥FST.



12 Jörg Endrullis, Jan Willem Klop, Aleksi Saarela, and Markus Whiteland

We expect that some of these questions can be answered by better understanding
what preorder Theorem 4.6 induces on spiralling functions and polynomials.

There are also intriguing decidability questions, for example:

(15) Is transducibility (≥FST) decidable for automatic (or morphic) sequences?

(16) Is equivalence (≡FST) decidable for automatic (or morphic) sequences?

Moreover, there are challenging questions concerning concrete streams:

(17) Is the degree of Thue-Morse an atom?

(18) Consider the period doubling sequence σ = 1011 1010 1011 1011 1011 · · ·
and drop every third element τ = 10 1 1 10 01 10 1 1 11 · · · . Do we
have τ ≥FST σ? If not, then Thue-Morse is not an atom.

(19) Are the degrees of Thue-Morse and Mephisto Waltz incomparable?

(20) Is it decidable whether an automatic sequence can be transduced to
(≥FST) or is equivalent to (≡FST) the Thue-Morse sequence?
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