
Clocks for Functional Programs ?

Jörg Endrullis1, Dimitri Hendriks1,
Jan Willem Klop1,2, and Andrew Polonsky1,3

1 VU University Amsterdam, Department of Computer Science
2 Centrum Wiskunde & Informatica (CWI)

3 Radboud Universiteit Nijmegen

j.endrullis@vu.nl r.d.a.hendriks@vu.nl

j.w.klop@vu.nl a.polonsky@vu.nl

Dedicated to Rinus Plasmeijer for his 61st birthday:
to a clean functional programmer, in friendship and admiration.

1 Introduction

Of the current authors the oldest one remembers with fondness numerous meet-
ings with Rinus from the ancient times of the European Basic Research Actions
and from personal tutorials in Nijmegen about λ-terms, term graphs and pro-
cesses on the one hand, and the practice of functional programming in the Clean
environment on the other hand.

The youngest author as well remembers with gratitude the AFP 2008 summer
school on functional programming that Rinus had helped organize. Taking place
in the idyllic Center Parcs, in Boxmeer, this gratifying experience from his PhD
years has left behind a number of wonderful memories.

Now that the clock for Rinus himself has arrived at 61 years, we like to
offer him the present elaboration of an inherent clock mechanism in functional
programs. A clock mechanism that is not only interesting from the perspective
of curiosity, but that serves two very concrete goals.

The first goal is to distinguish between different functional programs, differ-
ent in the sense that they are not convertible to each other by some canonical
conversion rules, such as β-reduction and the ensuing convertibility. The usual
procedure to establish such a discrimination is using the infinite unfolding, known
as the Böhm Tree; if their respective Böhm Trees are different, then the programs
are also inconvertible in the finite sense. But what if their Böhm Trees are iden-
tical? Then the classical Böhm Tree discrimination argument is not applicable.
But here our clock method steps in: by means of an annotated version of Böhm
Trees we often can observe a difference in the tempo in which the Böhm Trees
are generated, and if this tempo is sufficiently different (in a sense to be made

? The research has been partially funded by the Netherlands Organization for Scientific
Research (NWO) under grant numbers 612.000.934, 639.021.020, and 612.001.002.

2 Endrullis, Hendriks, Klop, Polonsky

precise), the original λ-terms (or functional programs) are inconvertible in the
finite sense.

So the discrimination can often be done on the basis of a difference in clock
velocity, but note that we do not mean the clock velocity in the actual computer
implementation, but a clock on a much higher level, on the level of the λ-terms
that ultimately encode the program.

The second concrete goal is to use the inherent clock phenomenon described
below for optimization of programs, or rather to measure the extent of such an
optimization. To give a quick example: the two simplest fixed point combinators
are the one of Church, Y0, and the one of Turing, Y1. While they perform sim-
ilarly, in the sense that Y0x and Y1x both reduce to the infinite iteration of x
written as xω, the first one delivers its output, the fixed point, in a faster tempo
than the second one.

In fact we will not go all the way back to good old λ-calculus to describe
the functional programs. First, we will adopt the simply typed version, because
this conforms much more to actual functional programming practice than pure,
untyped λ-terms would.

The second adaptation is that we consider the extension with the well-known
µ-operator for recursion. This is equivalent with using a fixed point combinator,
but it is more direct, and it again conforms more to actual functional program-
ming practice as it can be considered to be tantamount to the letrec operator.

In previous work [EHK10,EHKP12] we have worked out this inherent clock
feature in pure λ-terms. As the ticks of the clock, head reduction steps were used,
that lead one from one node in the Böhm Tree being developed to a successor
node. It is a simple observation that contracting internal redexes in a term can
only diminish the number of head redexes needed to reach the next node. In
other words, reducing a term can only speed-up its internal clock.

In subsequent work [EHKP13], we have internalized this ‘external’ counting
of the head steps, in favour of a τ -operator, like the silent step in process theory.
In the present work we do the same, but now with an additional ι-step to count
applications of the µ-rules. In fact, we work with weak head reduction.

We include some examples suggesting the use of the clock method for simply
typed λµ-terms, and thereby for functional programs.

As a historical note, we mention that [NI89] already proposed to use the
number of root steps used in evaluating a term in a term rewriting system as a
measure of efficiency in comparing terms.

2 A Glossary of Requisites

We will start with a glossary of preliminary notions. For general reference to
λ-calculus we refer to [Bar84], for typed versions of λ-calculus to [BDS13,HS08].
For a general reference to term rewriting systems we refer to [BN98,Ter03]. For
an introduction to functional programming, see [Hut07,dMJB+]. Rather than
repeat in detail much of what these general references offer, we present several
of the prerequisites for understanding this paper in the form of a somewhat

Clocks for Functional Programs 3

informal glossary. Some basic familiarity with λ-calculus and term rewriting
systems is assumed.

Lambda Calculus The kernel of all calculi figuring in this paper (except for
the λµ-calculus introduced later) will be the λβ-calculus with as single re-
duction rule the β-reduction rule (λx.M)N →β M [x :=N]. Here x ∈ X , the
set of variables. This rule may be applied in a context, a λ-term C[] with
a hole, resulting in one-step β-reduction C[λx.M] →β C[M [x :=M]]. The
transitive-reflexive closure of →β is written as →→β and the equivalence re-
lation generated by →β , also called β-convertibility, is =β . The λβ-calculus
has Ter(λ) as set of terms. It has the Church–Rosser or confluence prop-
erty (CR) stating that for M =β N there is a common reduct L such that
M →→β L←←β N . A normal form is a term N that does not admit→β-steps.
The property SN, strong normalization, stating that there are no infinite re-
duction sequences M0 →β M1 →β . . . does not hold in λβ, and neither does
WN, weak normalization, stating that every M ∈ Ter(λβ) has (reduces to)
a normal form. Both ¬SN and ¬WN are witnessed by the ‘unsolvable’ term
Ω ≡ ωω with ω ≡ (λx.xx) which has a β-loop to itself: Ω →β Ω. Here ‘≡’
denotes syntactic identity, to be distinguished from =β .

Fixed Point Combinators An fpc, fixed point combinator, is a term Y ∈
Ter(λβ) such that Y x =β x(Y x). The two simplest fpc’s are Curry’s fpc
Y0 ≡ λf.ωfωf where ωf ≡ λx.f(xx), and Turing’s fpc Y1 ≡ θθ where θ ≡
λab.b(aab). Using the term δ ≡ λab.b(ab), called the Owl in [Smu85], we have
Y0δ =β Y1.

An fpc Y is called reducing if not only Y x =β x(Y x), but even Y x →→β

x(Y x). So Y1 is reducing, but Y0 is not. If Y is a reducing fpc, also Y δ is
one.

Of interest are also weak fpcs, or wfpcs. These are terms Z ∈ Ter(λβ)
such that Zx = x(Z ′x) where Z ′ is again a wfpc. (This is a coinductive
definition.) So any fpc is a wfpc but not conversely. An example of such
a ‘proper’ wfpc is A(BAB) where B = λxyz.x(yz) and A ≡ Bω given by
Statman, see [EHK12].

Unsolvable Terms are terms that cannot be evaluated to positive informa-
tion, to a hnf. The ur-example is Ω as above. A λβ-term is unsolvable if it
has no hnf, which is the case if it admits an infinite reduction containing in-
finitely many head reduction steps, i.e., where a head redex R is contracted
(reduced); such a redex R occurs in a term λx.RN where x is a vector of
variables, and N a vector of terms.

Böhm Trees are the infinite expansions of λ-terms, analogous to expansions in
number theory such as π = 3.1415926535 For Böhm Trees (BTs) there
are two kinds of building blocks; positive information carriers which have
the form of a head normal form (hnf) λx.y2 . . . 2, where x, y ∈ X , the set
of variables, and 2 . . . 2 are empty places; and negative information carriers

4 Endrullis, Hendriks, Klop, Polonsky

(no information) of the form ⊥ or Ω. Definition 13 gives a more precise
description suitable for the present setting.
Next to the Böhm Tree semantics there is a slightly more refined semantics,
based on Lévy–Longo Trees (LLTs), and a third and finest semantics based
on Berarducci Trees (BeTs). See [EHK12].

Term Rewriting Systems This name is most often reserved for first-order
rewrite systems, where by definition there is no binding of variables as in
the β-reduction rule above, or the µ-reduction rule µx.t →µ t[x :=µx.t].
Sometimes the name is used in a generic sense to include all term rewrite
systems, first-order but also higher-order; but not e.g. term graph rewrite
systems where terms have been generalized to term graphs.

Some Notations As said, →→ or →∗ denotes the transitive-reflexive closure of
a rewrite relation →; →→→ always denotes infinitary reduction (of arbitrary
ordinal length). For the substitution operation we use the notation s[x := t]
to indicate that in term s all free occurrences of x are replaced by the term t.

Types We will be very short about types and refer to the before mentioned
standard reference works. Only this: we mostly use (as in [HS08]) the Church
style of writing the simple types, as superscripts A of subterms s, so as sA,
rather than the judgments s : A. Only occasionally we will have to mention
a typing as a judgment.

Infinitary Rewriting A development in term rewriting and λ-calculus which
has been elaborated in a relatively late stage, is that of infinitary rewriting,
which emerges naturally, and gives a domain where infinite Böhm Trees are
at home. The fpc Y1 ≡ θθ where θ ≡ λab.b(aab) already gives the idea:

Y1x→2 x(Y1x)→2 x(x(Y1x))→2 x3(Y1x)→→ xn(Y1x)→→ . . .

The natural extension here is to go on and continue rewriting to a limit
xω ≡ x(x(x(...))), so that we have Y1x→→→ xω. Here→→→ stands for an infinite
reduction, in this case of length ω; we therefore also write Y1x →ω xω.
In general we may have reductions s →α t for every countable ordinal α.
Infinitary rewriting requires a limit notion, which is that of ordinary Cauchy
convergence with respect to the usual metric distance d. That is to say,
d(s, t) = 2−n if n is the first level where the formation term trees of s and t
differ. There is however one extra requirement that is put on top of Cauchy
convergence: when approaching a limit ordinal such as ω, ω · 2, ω2, ε0, . . . ,
the ‘action’ has to go down all the way, more precisely, the depth of the
contracted redexes has to tend to ∞. Note that this is indeed the case in
the example Y1x→→→ xω above. But note also that we do not have Ω →ω Ω,
as here the action stays confined at the top, the root. (A trivial subtlety:
we do have Ω →→→ Ω, because we have →→→ ⊇ →→ ⊇ ≡: infinitary rewriting
comprises finitary rewriting which in turn comprises identity.)
Let us mention that in recent work [EHH+13] a coinductive definition of in-
finitary rewriting→→→ is given that is ‘coordinate-free’, i.e., avoids all mention

Clocks for Functional Programs 5

of ordinals and depth of redex contractions, which has the virtue of mak-
ing the notion of infinitary rewriting much more amenable to an automated
treatment and a formalization in theorem provers.

Main Syntactic Properties For finite rewriting as in λβ-calculus, λβµ-cal-
culus or their simply typed versions, but also in first-order term rewriting
systems (without bound variables) we have some important syntactic prop-
erties of the rewrite or reduction relation. These are:

CR the confluence property, ←← ·→→ ⊆ →→ ·←←;

PML Parallel Moves Lemma ← ·→→ ⊆ →→ ·←←;

WN weak normalization: every term has (reduces to) a normal form;

SN strong normalization: every reduction ends in a normal form when
prolonged long enough; otherwise said, there are no infinite reduc-
tions;

UN every term has at most one normal form.

The infinitary counterparts of these properties are:

CR∞ the infinitary confluence property, ←←← ·→→→ ⊆→→→ ·←←←;

PML∞ the infinitary Parallel Moves Lemma, ← ·→→→ ⊆→→→ ·←←←;

WN∞ every term has a (possibly infinite) normal form;

SN∞ every reduction sequence, when prolonged long enough, even infini-
tarily, will strongly converge to a (possibly infinite) normal form;
in other words, there are no diverging reductions;

UN∞ every term has at most one (possibly infinite) normal form. Here
‘has’ means ‘reduces to’ (→→→).

Miscellaneous Next to first-order rewrite systems (so without bound vari-
ables), and higher-order rewrite systems such as the calculi featuring in this
paper which all involve bound variables (by λ or µ), we have a general notion
of higher-order rewrite system, that unifies the afore-mentioned rewrite sys-
tems. These are the Combinatory Reduction Systems (CRSs), see [Ter03].
All rewrite systems in this paper belong to this general family. An important
notion in such systems is ’orthogonality’, meaning that the reduction rules
do not overlap harmfully; there are no critical pairs (and moreover the rules
must be left-linear, no duplicated variables in lefthand-sides of the rules). For
such orthogonal CRSs (once called OCRSs in this paper), we have the con-
fluence property CR, and hence also the property UN, unique normal forms.
The family of orthogonal CRSs also includes by definition subcalculi, where
(e.g.) a typing restriction is adopted. For such subcalculi the CR property
also holds.

6 Endrullis, Hendriks, Klop, Polonsky

3 A Cube of Calculi

The λβ-calculus can be considered to be the mother of all term rewriting sys-
tems—it is the origin corner of our cube of calculi in Figure 1. But it is not

λβ λβµ

λ∞β λ∞βµ

adding µ

in
fi
n
it

a
ry

λβ→ λβµ→

λ∞β→ λ∞βµ→

sim
pl

e
ty

pe
s

or λβY

or λβY→

λ∞βτ λ∞βτι

clocks
clocks

CR, ¬SN CR, ¬SN

CR, ¬SNCR, SN

CR, ¬CR∞

¬SN∞,UN∞

CR, ¬CR∞

¬SN∞,UN∞
CR, ¬CR∞

¬SN∞,UN∞

CR, ¬CR∞

¬SN∞,UN∞
CR, CR∞

SN∞,UN∞
CR, CR∞

SN∞,UN∞

Fig. 1. Partial ordering of calculi with some main properties.

the ‘main calculus’ of this paper, which is the simply typed λ-calculus with the
β-rule and extended with the variable binding operator µ and the corresponding
reduction rule. We use the notation λβµ→ for this λ-calculus. Writing Ter(λ)
for the set of λ-terms we first extend the terms to Ter(λµ), and next restrict the
terms to the typable ones, Ter(λµ→), according to the definition below. Let us
note that, for simplicity, in this paper we do not consider the η-reduction rule
(except for a brief appearance in Section 7.3).

The interest of the λβµ→-calculus is that it has a clear relevance for actual
functional programming, both by the discipline of simple typing, and by the
inclusion of the µ-operator which provides an abstraction over particular im-
plementations of the fixed point combinators, so that a term which is defined
by recursive equations can be analyzed without reference to the particular fixed
point combinator used to construct the solutions.

The λβµ→-calculus will be our platform for an extension with a clock mech-
anism (by τ and ι ticks of a clock) that will enable us to discriminate between
many fixed point combinators and the recursive solutions they facilitate. Thus we
can discriminate terms with general “periodic” behavior. For example, passing
to the λβµ→-calculus will allow us to discriminate functional programs defined
by letrec expressions that have the same extensional behavior but cannot be
converted from one to another by a finite sequence of syntactic rewrite steps. As

Clocks for Functional Programs 7

hinted at in the introduction, while the output of such programs could well be
the same, their computation may often be distinguished by considering the time
it takes to produce a value from one recursive step to the next one.

First, let us present the formal definition. The cube of calculi in Figure 1
displays the finitary and infinitary calculi that we define and study.

The following system is obtained by extending the simply typed lambda cal-
culus (λβ→) with a term constructor µxA.t together with corresponding typing
and reduction rules.

Types:

T ::= α | T→ T

Terms:

t ::= x | t t | λxT.t | µxT.t

Typing:

(xA) ∈ Γ
Γ ` xA

Γ ` sA→B Γ ` tA
Γ ` (st)B

Γ, xA ` tB

Γ ` (λxA.t)A→B
Γ, xA ` tA

Γ ` (µxA.t)A

Reduction:

β : (λxA.s)t→ s[x := t]

µ : µxA.t→ t[x :=µxA.t]

Having made a formal acquaintance with the main calculus λβµ→ of our
paper, in the cube of Figure 1 located at the corner 110, let us look at the
whole cube. In the origin 000 we find the λβ-calculus. From there new calculi
are obtained in three directions:

(i) by adding µ and its reduction rule (x-direction);

(ii) by adopting the simple type discipline (y-direction);

(iii) and by making the calculus infinitary by a coinductive reading of all the
definitions (z-direction).

Furthermore there are some related calculi outside of this cube. The result is a
family of a dozen related λ-calculi as in Table 1.

Remark 1. (i) One could also consider the untyped λβµ-calculus as the main
calculus of our exposition, but we prefer the typed version because it admits
natural intuitive interpretation in terms of Scott domains [Plo77], and rules
out pathological terms such as µx.xx, which has Böhm Tree

@(@(@..)(@..))(@..)

Its term tree is depicted in Figure 2.

8 Endrullis, Hendriks, Klop, Polonsky

position notation name

000 λβ λβ-calculus

001 λ∞β infinitary λβ-calculus

010 λβ→ simply typed λβ-calculus

011 λ∞β→ infinitary simply typed λβ-calculus

100 λβµ λβµ-calculus

101 λ∞βµ infinitary λβµ-calculus

110 λβµ→ simply typed λβµ-calculus

111 λ∞βµ→ infinitary simply typed λβµ-calculus

λβY λβY-calculus

λβY→ simply typed λβY-calculus

λ∞βτ (→) (simply typed) clocked λβ-calculus

λ∞βµτι(→) (simply typed) clocked λβµ-calculus

λµ λµ-calculus

Table 1. Family of λ-calculi.

·

·

·
...

...

·
...

...

·

·
...

...

·
...

...

Fig. 2. Term tree of the Böhm Tree of µx.xx.

(ii) The simply typed λβµ→-calculus is very interesting, as it harmoniously com-
bines some seemingly opposite features. On the one hand, the presence of
the simple type discipline seems to forbid infinite reductions, as it does in
the sub-calculus λβ→, the simply typed λβ-calculus. However, then we also
loose fixed point combinators (fpc’s), as these all have by definition an in-
finite reduction. Now this loss is cured by reinstating fpc’s by virtue of the
µ-operator and the corresponding reduction rule. This simultaneous restric-
tion and extension is still harmonious, in that it has the confluence property
(CR). This is so because λβµ→ is a sub-calculus of an orthogonal CRS,
namely the λβµ-calculus.

(iii) It is a rewarding exercise to check where the usual SN-proofs for simply
typed lambda-calculus fail in the presence of the µ-operator. For the proof
using multisets of degrees of redexes, the reason is that created redexes do
not have a degree which is less complicated. What is the reason for failure
of the other main type of SN proof via computability?

(iv) Another interesting aspect of this restricted-extended calculus, and some of
its related calculi, is that its meta-theory hovers on the brink of decidability.

Clocks for Functional Programs 9

The related calculus λβY has undecidable convertibility, but decidable un-
solvability and normalizability [Sta02]. Presumably the same holds for the
present calculus.

4 Variations of the Main Calculus

In this section we will describe some variations of the main calculus λβµ→,
three finite calculi, and one infinitary extension. The three finite versions are
well-known in practice; the infinite extension is less well-known, but provides a
firm foundation for functional programming.

4.1 The λβY Variant

Instead of the µ-constructor, we could instead assume the existence of a family
of terms

Y
(A→A)→A
A

together with the reduction rule

Y : YAf → f(YAf)

This system, when extended with a native type of natural numbers, is a
Turing-complete programming language for functionals of higher types. It was
introduced in 1966 by Platek [Pla84] in order to define higher-order computabil-
ity in an “index-free” manner. Plotkin [Plo77] extensively studies the semantics
of this calculus, culminating in the full abstraction problem for PCF. Bezem
discusses λβY in [BDS13, Ch. 5].

Without the type of natural numbers, Irina Bercovici [Ber85] shows that
having a head normal form is decidable. Similarly, normalization and compact-
ness (Böhm Tree finiteness) are decidable. Despite these results, Statman [Sta02]
shows that the full word problem (convertibility with respect to the reduction
rules β and Y) remains undecidable.

However, restricting to the lowest type level, and admitting only Y’s of type
(0→ 0)→ 0, the word problem is solvable. Statman employs in the short proof
of this fact an auxiliary reduction which is just our µ-reduction:

Y(λx.s)→ s[x :=Y(λx.s)]

Our main calculus λβµ→ has an interesting sub-calculus, namely the one
consisting of the fragment of only µ-binders, variables and applications. In our
current notation it can be called λµ. So there is no β-reduction, only µ-reduction.
Now one can ask whether this calculus has a solvable word problem, or in other
words, whether its convertibility relation is decidable. Indeed this is the case.
There are two sources for a proof of this fact: first, it is a corollary of Statman’s
result [Sta02] mentioned above, and second, it was also proved for the untyped
setting in [EGKvO11].

For the rest of the paper, we will stick with the µ-constructor formulation of
the fixed point lambda calculus, which is our main calculus λβµ→.

10 Endrullis, Hendriks, Klop, Polonsky

4.2 The letrec Variant

Another system of equal expressive power is that obtained by postulating the
existence of solutions to arbitrary systems of equations of the form

x1 = t1[x]
...

xn = tn[x]

That is, instead of formally adding a unary fixed point constructor, the language
provides the ability to solve multiple fixed point equations simultaneously.

This idea is implemented by the letrec construction commonly found in
functional programming languages such as Clean [dMJB+]. Its syntax is given
as follows:

t ::= x | t t | λxA.t | let x1:=t, . . . , xn:=t in t

For convenience, we will write (let x := t in u) in place of

let x1:=t1, . . . , xn:=tn in u

Similarly, in the typing rule below, we will write xA in place of

xA1
1 , . . . , xAnn

The typing rule is

Γ,xA ` tA1
1 · · · Γ,xA ` tAnn Γ,xA ` uB

Γ ` (let x := t in u)B

The computation of (let x := t in u) returns u in which occurrences of xi
get replaced by ti, possibly creating new occurrences, which can subsequently
be replaced again, and so on. As a rewrite rule, this can be formalized as

let x := t in u → u[xi := (let x := t in ti)]i=1..n

For our purposes, this rule is much less convenient to work with than that
of the µ-constructor, hence we will stick with the original formulation. The two
systems are mutually interpretable, although there are some subtleties related to
the possibility of “horizontal sharing” (as it was called in [AK95]) in the letrec

system which we will not investigate here. In any case, the letrec syntax is
precisely what we find in Clean-like functional languages.

4.3 Simultaneous Fixed Point Solutions Via The µ-Operator

Clearly, every λµ-term can be captured within the previous syntax: the expres-
sion µxA.t is represented by the single-variable expression let x := t in x.

Going the other way, we can represent any term M defined by a simultaneous
recursion system (let x := t(x) in u) by a cascade of µ-expressions.

Clocks for Functional Programs 11

We show this by an example. Suppose we are a given a letrec expression

M = let x1 = t1(x1, x2, x3)

x2 = t2(x1, x2, x3)

x3 = t3(x1, x2, x3)

in

u(x1, x2, x3)

Define the terms

f3(x1, x2) = µx3.t3(x1, x2, x3)

f2(x1) = µx2.t2(x1, x2, f3(x1, x2))

f1 = µx1.t1(x1, f2(x1), f3(x1, f2(x1)))

Finally, put
Mµ = u(f1, f2(f1), f3(f1, f2(f1)))

and it can be easily seen that Mµ the same extensional behavior as M (i.e., Mµ

is bisimilar to M).

Convention 2 Using the previous technique of solving simultaneous recursive
systems using the µ-operator, we will sometimes write

µxA.t(x1, . . . , xn)

for the corresponding µ-term solving the system given in the matrix. Here we
take as given that ti(x

A1
1 , . . . , xAnn) has type Ai.

Example 3. Here are some examples of λµ→-terms.

(i) The simplest meaningful example is the definition of a fixed point combinator
by way of the µ-notation. Put

Y = λfA→A.µyA.fy

Then Y f =βµ f(Y f). We have the head reduction

Y f → µy.fy → f(µy.fy)→ f(f(µy.fy))→ · · · → fn(µy.fy)→ · · ·

(Here and throughout, we spare annotation of the types of bound variables
when they are unambiguously determined by the immediate context.)

(ii) Applying the above term to the identity yields the canonical unsolvable
λµ-term for any type A:

⊥A = µxA.x

which has the head reduction

⊥ → ⊥ → · · ·

See [EGKvO11] for a characterization of all unsolvables arising in the λµ-calculus,
e.g., µxyz.x and µxyz.y are examples.

12 Endrullis, Hendriks, Klop, Polonsky

4.4 Infinitary Calculi

It is interesting to extend λβµ→ to include infinitary rewriting. We call the re-
sulting infinitary simply typed calculus: λ∞βµ→. Not only the calculus itself, but
also its definition method is an interesting application of the recently developed
method to define infinitary rewriting, both the terms and the reductions, using
coinduction and coalgebraic techniques [CC96,EP13,EHH+13]. In the present
case the new elements are the µ-construct and the simple types. Both can be
lifted to the infinite setting by a straightforward coinductive reading of the defin-
ing clauses. Intuitively, the benefit is that in this way the somewhat coinductive
flavour of the typing rule for µ-terms is elucidated. It follows straightforward by
a consideration of the infinite normal form of the µ-term, and its obvious simple
typing. Figure 3 contains an example.

(µy0.(I0→0y0)0)0 (µy0.y0)0
β

·0

I0→0 ·0

I0→0 ·0

I0→0 ...

µ reduction loop

reduction loop

Fig. 3. Failure of infinitary confluence (CR∞) in the main calculus λ∞βµ→.

How about the fundamental theorems for λ∞βµ→? We have the failure of
PML∞, the infinitary parallel moves lemma, as the following counterexample
witnesses:

µy. Iy →→→µ Iω and also µy. Iy →β µy. y

Both reducts can only reduce to themselves, in one step. Hence ¬PML∞ , and
therefore also ¬CR∞. (See Figure 3.)

Note that the looping terms in Figure 3 are unsolvable. This observation
suggest to restore infinitary confluence (CR∞) by quotienting out the unsolvable
terms, see [EHK12]. In spite of the failure of CR∞, UN∞ holds, by an appeal
on a theorem of Ketema and Simonsen [KS09], stating UN∞ for all infinitary
OCRSs; here we have a substructure of such an iOCRS, which by its closure
properties admits the same proof of UN∞.

Clocks for Functional Programs 13

Remark 4. Pure µ-terms µx1, . . . , xn.xi are unsolvable. The µ-reductions be-
tween theses terms constitute an interesting reduction graph, see [EGKvO11].
In particular, the terms µx1, . . . , xn.x1 are looping terms. All these µ-unsolvables
reduce to µx.x.

Question 5. Looping terms (admitting a one-step reduction cycle) are interesting
as they constitute the difference between the canonical notion of convergence in
infinitary rewriting, namely strong convergence (see Glossary), and mere Cauchy
convergence:

(i) For the finite λβ-calculus the looping terms are easily classified: they are of
the form C[Ω] for some context C[]. For the infinitary λ-calculus λ∞β the
full characterization of looping terms was given by Endrullis and Polonsky
in [EP13]. Two questions arise at this point:
(a) What are the looping terms in the main calculus λ∞βµ→?
(b) And without typing, so in λ∞βµ?

(ii) For λβµ the question is easy, using the remark above and item (i).

5 Adding Clocks

In this section we prove the main results, the clock theorems, of this paper. We
introduce clocked Böhm Trees [EHK10,EHKP12,EHKP13] for the λβµ-calculus.
For this purpose, we extend the λβµ→-calculus with unary constructors τ and
ι that are witnesses of β-steps and µ-steps, respectively. The resulting calculus
is orthogonal and infinitary normalizing. The unique infinitary normal forms
are Böhm Trees enriched with τ and ι providing information on the speed at
which the tree was formed (the number of steps needed to head normalize the
corresponding subterm).

Definition 6. The set Ter∞(λµτι) of (finite and infinite) terms of the clocked
λµ-calculus is coinductively defined4 by the following grammar

M ::=co x |MM | λx.M | µx.M | τ(M) | ι(M) (x ∈ X)

The set of contexts is inductively defined by

C ::= 2 | λx.C | CM |MC | τ(C) (x ∈ X ,M ∈ Ter∞(λµτι))

Definition 7. The rewrite rules of the clocked λµ-calculus are:

β : (λx.t)s→ τ(t[x := s]) τ : τ(x)y → τ(xy)

µ : µx.t→ ι(t[x :=µx.t]) ι : ι(x)y → ι(xy)

The rewrite relation → is defined as the closure under contexts of these rules.

4 This means that Ter∞(λµτι) is defined as the greatest fixed point of the underlying
set functor.

14 Endrullis, Hendriks, Klop, Polonsky

The shift rules for τ and ι (on the right) are adopted for a better cor-
respondence between the unclocked and the clocked version of the calculus.
Without the shift rules, we could not lift reduction from the unclocked to the
clocked calculus since the τ or ι may be in the way of a β-redex. For exam-
ple, the unclocked reduction IIx →β Ix → x yields in the clocked calculus
IIx →β τ(I)x →τ τ(Ix) →β τ(τ(x)) where the shift step is needed to reveal
the β-redex.

In this section we can do without the simple type discipline but it would be
easy to adopt it. In that case we assume the trivial typing rules for τ and ι, that
is to say: a τ -term has the type of its argument, and likewise for ι.

We write→ for the usual (non-clocked) λβµ-rewrite relation. We write τn(t)
for the term τ(τ(· · · τ(t))) with n τ ’s, and likewise for ιn(t).

Example 8. Consider µx.x. We have the reduction

µx.x→ ι(µx.x)→ ι(ι(µx.x))→ · · · →→→ ιω

An infinite stack of τ ’s and ι’s in the normal form indicates that the correspond-
ing position in the term could not be evaluated to a weak head normal form. In
the Böhm Tree such unsolvable subterms are replaced by ⊥ or Ω.

The motivation for choosing different witnesses for β- and µ-steps is to extract
more information from the reduction to the normal form. By distinguishing
between τ ’s and ι’s, we can extract information about the working of unsolvables.
For example, let ω ≡ λx.xx, then we have:

ωω → τ(ωω)→ τ(τ(ωω))→ · · · →→→ τω

Note that τω is a different form of undefined than ιω. We can also have infinite
towers of alternating τ ’s and ι’s as illustrated by the reduction:

µx.Ix→ µx.τ(x)→ ι(τ(µx.τ(x)))→ ι(τ(ι(τ(µx.τ(x)))))→ . . .→→→ (ιτ)ω

This example has lead to failure of CR∞ in the λβµ→-calculus as shown in
Figure 3. In the clocked setting, the infinitary confluence is restored as shown in
Figure 4. For the elementary diagrams involved we refer to Figure 5.

Example 9. Let us have a look at the fixed point combinators of Curry and
Turing. In the λβµ→-calculus these fpc’s can be rendered as follows.

(i) Curry’s fpc Y0 corresponds to λf.µx.fx ; par abus de langage we also use Y0
for the latter term. Then we have

Y0f ≡ (λf.µx.fx)f

→ τ(µx.fx)

→ τ(ι(fµx.fx))

→ τ(ι(f(ι(fµx.fx))))

→ . . .→→→ τ((ιf)ω) (= τ(ι(f(ι(f . . .)))))

Clocks for Functional Programs 15

µy.Iy µy.τ(y)
β

(ιτ)ω

ι(Iµy.Iy)

ι(τ(µy.Iy))

ι(τ(µy.τ(y)))

µ

β

βµ

µ

µ

Fig. 4. Restoring of infinitary confluence with clocks (compare with Figure 3).

µy.Iy I(µy.Iy)

µy.y µy.y

µ

β

β

β

µy.Iy ι(I(µy.Iy))

µy.τ(y) ι(τ(µy.τ(y)))

ι(τ(µy.Iy))

µ

β

β

β

µ

Fig. 5. Elementary diagrams: unclocked (left) and clocked (right).

(ii) Turing’s fpc Y1 corresponds to µx.λf.f(xf). Again we also use Y1 to denote
this µ-term. Then we have

Y1f ≡ (µx.λf.f(xf))f

→ (ι(λf.f(Y1f)))f

→ ι((λf.f(Y1f))f)

→ ι(τ(f(Y1f)))

→ . . .→→→ (ιτf)ω (= ι(τ(f(ι(τ(f . . .))))))

The term Y0 is more efficient than Y1 in the sense that between the f ’s in the
infinitary normal forms of Y0 and Y1, we have ι in contrast with ιτ , respectively.

Remark 10. The clocked λµ-calculus can be extended to atomic clocks, as they
are called in [EHK10,EHKP13], as follows:

β : (λx.t)s→ τε(t[x := s]) τ : τp(x)y → τLp(xy)

µ : µx.t→ ιε(t[x :=µx.t]) ι : ιp(x)y → ιLp(xy)

Positions are defined as words over the alphabet {λ,L,R} in the obvious way;
the letter L stands for ‘left’; ε denotes the empty word. Then the symbols τp and
µp witness not only the type of the rewrite step but also its (relative) position p.
In order to keep the presentation simple, we stick to the non-atomic clocks.

Lemma 11. The rewrite relation→ has the properties UN∞, SN∞ and CR∞.

16 Endrullis, Hendriks, Klop, Polonsky

Proof. Observe that any contraction of a root redex will introduce a τ or ι at the
root, hence every term admits at most one root step. We get SN∞ by the non-
existence of root-active terms [KdV05]. Finally, UN∞ follows from orthogonality
of the rules, see [KS09] and CR∞ immediately follows from UN∞ and SN∞.

For terms M , we use nf (M) to denote the unique infinitary normal forms
of M with respect to→ . We note that nf (M) corresponds to the Lévy–Longo
Tree [EHK12] of M enriched with symbols τ and ι that provide information
about the speed in which this tree has been developed.

Definition 12. We define τ, ι-removal →acc ⊆ Ter∞(λµτι)2 as the closure un-
der contexts of the rules

τ(M)→M ι(M)→M

and use =acc to denote the equivalence closure of →acc (the subscript “acc”
abbreviates “acceleration”). For M,N ∈ Ter∞(λµ), we define

(i) M � N , M is globally improved by N iff nf (M)→→→acc nf (N);
(ii) M = ∃ N , M eventually matches N iff nf (M) =acc nf (N).

So global improving means that we may drop everywhere in the normal form
of M occurrences of τ and ι, even in infinitely many places; while eventual
matching means that we may drop these symbols in finitely many places only,
so that there is almost everywhere a precise match.

Definition 13. A head context is a context of the form D[2N1 . . . Nm] where D
is built from λx.2 , τ(2) and ι(2). A head reduction step →h is a step in a head
context (the position of the step is the position of the hole).

A head normal form (hnf) is a λ-term of the form C[y] where C is a head
context and y ∈ X . A weak head normal form (whnf) is an hnf or an abstraction,
that is, a whnf is a term of the form xM1 . . .Mm or λx.M . A term has a (weak)
hnf if it reduces to one.

The following proposition states that clocks are accelerated under reduction:

Proposition 14. If M →→ N , then N improves M globally, i.e., nf (M)→→→acc

nf (N).

Proof. We reduce terms to their unique infinite normal form in a top-down fash-
ion. A position in a term t is (weakly) stable if it is not (strictly) contained in
a subterm t′ ≡ t′′N1 . . . Nm of t for which t′′ is a redex. Observe that stable
symbols (i.e., symbols at stable positions) cannot be touched by any reduction.
A top-redex in a term t is a redex occurrence ρ whose position is weakly stable.
Note that top-redexes stay top when other redexes are contracted. Fair con-
traction of top-redexes guarantees to reach the infinitary normal form in ≤ ω
steps.

By induction on the length of the reduction M →→ N it suffices to consider a
single rewrite step M → N . The step → can be modeled by a step → with the

Clocks for Functional Programs 17

only difference that the step → creates an additional symbol ξ ∈ {τ, ι}. Thus
M → N ′ with N ′ →acc N by dropping the symbol ξ. We trace the residuals of ξ
over reductions with respect to → . For this purpose we employ the standard
notion of tracing [Ter03,BKdV00] except for the rules

τ : τ(x)y → τ(xy) ι : ι(x)y → ι(xy)

where we consider the τ and ι displayed in the right-hand sides to be residuals
of the τ and ι displayed in the left-hand sides, respectively.

Consider a rewrite sequence N ′ ≡ N ′1 → N ′2 → N ′3 → . . . of length ≤ ω
to infinitary normal form nf(N ′) contracting only top-redexes. By uniqueness of
normal forms (Lemma 11) we have nf(N ′) ≡ nf(M). For n = 1, 2, . . ., we define
Ni as the result of dropping all residuals of ξ from N ′i (that is, contracting
all residuals of ξ with →→→acc). The results Ni of the dropping are well-defined
since the residuals of ξ are finitely nested (every step → can at most double
the nesting depth). We then have a rewrite sequence N ≡ N1 → N2 → . . .
with limit nf(N). We have nf(N ′) →→→acc nf(N) as the limit of the reductions
N ′i →→→acc Ni for i→∞.

This immediately yields the following discrimination method:

Theorem 15 (First Discrimination Criterion). If N cannot be improved
globally by any reduct of M , then M 6=βµ N .

Proof. If M =βµ N then by confluence these terms have a common reduct. By
Proposition 14 this common reduct globally improves M .

We now define a class of ‘simple’ terms for which the clock is invariant under
reduction (changes only in finitely many positions). The idea is that in reductions
of simple terms there are no duplications of redexes. In fact, we only need to
require this for the top-down reduction to Lévy–Longo Tree normal form. The
following definition makes this precise:

Definition 16. [Simple terms] A redex (λx.M)N is called:

(i) linear if x has at most one occurrence in M ;
(ii) call-by-value if N is a normal form; and
(iii) simple if it is linear or call-by-value.

A redex µx.M is called simple if M is in normal form.
The set of simple terms is coinductively defined as follows (that is, the largest

set such that the following conditions holds): A term M is simple if

(a) M is not in whnf, M →h M
′ contracting a simple redex and M ′ is simple,

(b) M ≡ λx.M ′ with M ′ a simple term, or
(c) M ≡ yM1 . . .Mm with M1, . . . ,Mm simple terms.

In contrast to previous work [EHKP13] this definition of ‘simple’ also con-
siders reduction steps inside of unsolvables. While previously every unsolvable
had the infinite normal form τω, the clocked λµ-calculus allows to extract infor-
mation from unsolvables as they are mapped to infinite towers consisting of τ ’s
and ι’s, see Example 8.

18 Endrullis, Hendriks, Klop, Polonsky

Example 17. Let us consider two unsolvables:

(i) The term Ω ≡ ωω reduces in one step to Ω without duplicating a redex (the
term ω does not contain a redex). Thus the terms Ω ≡ ωω is simple.

(ii) The term µx.Ix is not simple, but can be simplified, that is, reduced to a
simple term. The term itself is not simple since the reduction step µx.Ix→
Iµx.Ix duplicates the redex I. However, a reduction step µx.Ix→ µx.x yields
a simple term µx.x. Note that for discriminating terms M,N it is always
sufficient to convertible terms M ′ = M and N ′ = N .

Proposition 18. Let N be a reduct of a simple term M . Then N eventually
matches M (i.e., nf (M) =τ nf (N)).

The following is a reformulation of [EHK10, Corollary 32] for Lévy–Longo Trees:

Corollary 19 (Second Discrimination Criterion). If simple terms M , N
do not eventually match (nf (M) 6=acc nf (N)), then they are not β-convertible:
M 6=β N .

Proof. The proof proceeds the same as the proof of Theorem 15 with the ad-
ditional observation that due to M,N being simple, the symbol ξ cannot be
duplicated (stems from a redex).

Example 20. We discriminate the unsolvables in Example 8. The term Ω is sim-
ple, and µx.Ix =β µx.x with µx.x simple; see Example 17. We have nf (Ω) = τω

and nf (µx.x) = ιω. Hence by the second discrimination criterion (Corollary 19),
the terms Ω and µx.x are not =βµ-convertible.

Note that every term without weak head normal form in the λβµ-calculus
gives rise to a clocked normal form which in fact is an infinite stream of τ ’s and
ι’s. For simple terms without whnf the discrimination criterion thus amounts
to eventually matching of their corresponding streams. The initial segments are
not relevant, it is the behavior at infinity that counts.

In Section 7 we give more example applications of this discrimination method.

6 A Functional Programming Application

We discuss a potential application of clocks for the performance optimization
of functional programs. The transformations we mention here are well-known
in functional programming and form a part of compile-time optimizations. Our
point is merely that the clocked λβµ-calculus gives rise to a measure for com-
paring the performance of programs, thereby illustrating why a certain variant
is preferable.

We have the following distributivity law

µfA→B .λxA.t(x, fx) = λxA.µyB .t(x, y) (1)

Clocks for Functional Programs 19

First of all, notice that computation of the Böhm Tree of the term on the left
side of (1) does indeed contract an additional redex every time a recursive node
is reached (corresponding to occurrences of fx). It follows by the discrimination
theorem that these two terms are not convertible via finitary reduction steps.
At the same time, the term on the right is to be preferred in any practical
implementation of a recursive function of type A → B. It may thus be of some
interest that such patterns are actually quite common in programming practice.

Example 21. Consider the standard map function (we use Clean notation):

map f [] = []

map f [a:as] = [f a : map f as]

In this code, the argument f must be passed on during each recursive call,
yielding an additional β-reduction step at every turn. This additional time step
can be recovered by reimplementing map as follows:

map f as = map’ as where

map’ [] = []

map’ [a:as] = [f a : map’ as]

There is a close correspondence with the fixed point combinators of Curry and
Turing, see Example 9. The first implementation of map corresponds to Turing’s
fpc Y1 which passes the argument f from recursive call to recursive call, while
the second implementation of map corresponds to Curry’s fpc Y0 which abstracts
over f outside of the recursion. As shown in Example 9, Y0 has a faster clock
than Y1.

We note that, fixing all recursive definitions in a program by abstracting their
constant arguments over the recursion (as above) might not in itself eliminate
all threats to efficiency. Functional programs are often built up from various
combinators. Yet when one such combinator is applied to another, new “hidden
redexes” may appear.

For example, the above map function could be invoked in order to “whiteout”
a list by some constant c:

fill lst = map (\x = c) lst

At every invocation, this turns into the equivalent code

fill [] = []

fill [a:as] = [(\x = c) a : fill as]

(In the notation of the λ-calculus, we could write fill = map’[f :=λx.c].)
We note that this code is suboptimal: it has a redex (λx.c)a which appears

in every recursive call, but which gives the same value. In this case the program
is convertible to its best version:

fill [] = []

fill [a:as] = [c : fill as]

20 Endrullis, Hendriks, Klop, Polonsky

But the example illustrates how the functional clock can become slow because
there is an extraneous redex that is created at every iteration.

(The clock is also slower when the redex in question occurs inside the func-
tion supplied to map. However, this situation is well-studied: it is precisely the
argument in favor of strict evaluation of those function arguments that come to
the head position in the body of the function.)

All these optimizations are related to the concept of inlining from compiler
theory. In a sense, inlining is an operation that lifts redexes out from run-time
into compile-time, where they can be contracted before program execution be-
gins. This optimization comes with obvious associated space costs. Yet when
time is of priority, it is generally a good idea to inline as much as possible.

Our current framework provides a possibility to detect inlining opportunities
based on static syntactic inspection of code. It does not appear that all modern
compilers of functional languages take advantage of this possibility in full gener-
ality. We wonder whether the Clean compiler can make use of such information!

7 Sequences of Fixed Point Combinators

Fixed point combinators are very suitable to test discrimination methods, be-
cause there are so many of them, and because they all have the same Böhm
Tree λf.fω. When they are constructed in different ways, they can be inconvert-
ible, in the case of this paper with its main calculus λβµ→, using the β- and
µ-reduction rules. In this section we consider the most ‘canonical’ sequence of
fpc’s, that we call the Böhm sequence, and next a less well-known sequence, that
we call the Scott sequence, due to the history and background of its construction
(see [EHK10,EHKP12]). As a third topic in this section we analyze the question
whether in the calculus λβµ→ there are more singleton fpc-generators like 2δ,
using Barendregt’s inhabitation machines to help us enumerate certain simple
types.

7.1 The Böhm Sequence

Just as in the case of untyped λ-calculus we can conjure up an infinite sequence
of fpc’s Y0,Y1, . . . where Y0 ≡ λf.µy.fy and Yn+1 ≡ Ynδ with δ ≡ λab.b(ab). It is
easily checked that all Yn are fpc’s. What is much harder to check is that they
are mutually different with respect to =βµ:

Yn =βµ Ym ⇐⇒ n = m

We have Yn+1 = Y1δ
∼n and the infinite clocked normal form of Y1δ

∼n can be
computed as follows:

Y1δ
∼n ≡ (µx.λf.f(xf))δ∼n →µ · →∗ι ι((λf.f(Y1f))δ∼n)

→β · →∗τ ιτ(δ(Y1δ)δ
∼(n−1))

→∗ ιτ1+2(n−1)(δ(Y1δ
∼n))

Clocks for Functional Programs 21

→∗ ιτ2n(λf.f(Y1δ
∼nf))

→∗ ιτ2n(λf.f(f(ιτ2n+1(Y1δ
∼nf))))

→→→ ιτ2n(λf.f(ιτ2n+1(f(ιτ2n+1(. . .)))))

≡ ιτ2n λf.f(ιτ2n+1f)ω

Thus nf (Y1δ
∼n) ≡ ιτ2n λf.f(ιτ2n+1f)ω. Note that in the computation of the

clocked normal form of Y1δ
∼n we really need the shift-rules for τ and ι in order

to let these constants not impede the necessary reductions. Here we used the
notation Mω for M(M(M(. . .))), so e.g. (ιτf)ω ≡ ιτfιτfιτf . . . with all brackets
associating to the right.

Note further that we have carried out the reduction in a top-down fashion,
and none of the steps has duplicated a redex. Thus the terms Y1δ

∼n are simple.
By the second discrimination criterion (Corollary 19), we can discriminate these
fixed point combinators pairwise with respect to =βµ since their clocked normal
forms do not eventually match.

7.2 The Scott Sequence

As shown in [EHK10,EHKP12], there is another way to generate new fpc’s as
follows: if Y is a reducing fpc, then Y (SS)I is an fpc. Indeed we calculate

Y (SS)Ix→→β SS(Y (SS))Ix→→β SI(Y (SS)I)x→→β x(Y (SS)Ix)

In fact we have for every n ≥ 0: Y is a reducing fpc =⇒ Y (SS)S∼nI is a reducing
fpc. Here we use the notation AB∼n defined by AB∼0 = A and AB∼n+1 =
ABB∼n .

In this way we can generate many new fpc’s. The question however is how to
show that they are indeed new, i.e., that for different sequences of ‘fpc-building
blocks’ π1, . . . , πk and π′1, . . . , π

′
k where each πi and π′j is 2δ or 2(SS)S∼nI for

some n ≥ 0, we have M1 ≡ Y0π1, . . . , πk 6=βµ Y0π
′
1, . . . , π

′
k ≡M2.

To perform the discrimination argument we can proceed in analogy with the
treatment above for 2δ with two stipulations. First, we have to simplify the
terms by reducing the subterms SS to their normal forms λabc.bc(abc). Second,
we need the refined atomic clocks defined in Remark 10. Otherwise we could not
distinguish the effect of swapping two blocks in the sequence π1, . . . , πk.

7.3 Other Fpc-Generators

As we have seen above, the term δ ≡ λab.b(ab) has the peculiar property that it
generates new fpc’s when postfixed to an already available fpc: Y is an fpc =⇒
Y δ is an fpc. We shall now consider the following problem:

Give the set of λ-terms G such that, for an fpc Y , Y G is again an fpc.

For general G this problem becomes intractable due to the usual pathologies of
the type-free λ-calculus. However, it is interesting to solve this problem for the

22 Endrullis, Hendriks, Klop, Polonsky

simply-typed setting. That is, we shall work in λβµ→. In fact, with λβηµ→ as
it is natural in this subsection to include the η-rule

η : λx.Mx→M if x not free in M

and long βη-normal forms (this is the only part of the paper where the η-rule is
used).

In this context, we solve the above problem using the technique of Baren-
dregt’s Inhabitation Machines [BDS13].

Suppose G is such that Y G is a fixed point combinator in λβµ→, for Y
fpc. Since Y G must have type (α → α) → α for any α, while Y has type
(A→ A)→ A, for some A, we must have that A = (α→ α)→ α.

For σ ∈ T, write σo for the type (σ → σ)→ σ. With this notation, the above
becomes

Y G : αo

Y : (αo → αo)→ αo (= αoo)

whence we see that G must have type αo → αo. Using the inhabitation machines,
we enumerate all closed βη-normal forms of this type. (Here, as is usual in type
theory, the normal forms for η are the “long” normal forms, where every subterm
of type A1 → · · · → An → α begins with n abstractions.)

Using [BDS13, 2.3] we get the diagram:

αo → (α→ α)→ α

λy(α→α)→αλfα→α

��
a oo α

y

��

f

α→ α

λa

TT

The paths through the above diagram terminating in a leaf node correspond
to finite βη-normal forms of the given type, while infinite paths correspond to
infinite βη-normal forms. From the diagram, we see that the general form of a
term of type αo → αo is

λyα
o

λfα→α.fn0(y(λa1.f
n1(y(λa2.f

n2(. . . y(λak.f
nkai) · · ·)

Let G be the collection of such terms, and let G ∈ G. We shall now investigate
under what conditions G is an fpc generator.

Let us note immediately that n0 must be positive, for otherwise the head
variable of the term is its first abstracted variable, and an application of a fixed
point combinator to such a term always results in an unsolvable.

Notice also that ai occurs in G for exactly one i. So we can write

G = λyf.f1+n
′
0(y(K(fn1(· · · y(λa.fni(y · · ·K(fnka) · · ·)

where a = ai and n′0 = n0 − 1.

Clocks for Functional Programs 23

Proposition 22. Let Y be a (w)fpc and YG = Y G. Then

YGf = fm(YGf
n)

where m = n1 + · · ·+ ni−1, and n = ni + · · ·+ nk.

Proof. We are going to show that

YGf = f
∑i−1
j=0 nj (YG(λa.f

∑k
j=i nja))

= fn1+···+ni−1(YG(λa.fni+···+nka))

by the following five steps.

1. For any number nj , we have

YG(K(fnja)) = GYG(K(fnja))

= (K(fnja))1+(n0−1)(YG(K · · ·)))
= K(fnja)

(
(K(fnja))n0−1(YG · · ·)

)
= fnja

2. By induction, we have, for j ≤ j′

YG(K(fnj (· · ·YG(K(fnj′a)) · · ·)
= YG(K(fnja))[a :=YG(K(fnj+1(· · ·YG(K(fnj′a)) · · ·)]
=1 f

nj (YG(K(fnj+1(· · ·YG(K(fnj′a)) · · ·)
=IH fnj (fnj+1+···+nj′a)

= fnj+···+nj′a

3. In particular, we have

YG(K(fni+1(· · ·YG(K(fnka)) · · ·) = fni+1+···+nka (2)

YG(K(fn1(· · ·YG(K(fni−1A) · · ·) = YG(K(fn1(· · ·YG(K(fni−1a) · · ·)[a :=A]

= fn1+···+ni−1A (3)

4. Using (2), we get

λa.fni(YG(· · ·K(fnka))) = λa.fni+···+nka (4)

5. Putting it all together gives

YGf = fn0(YG(K(fn1(· · ·YG(λa.fni(· · ·YG(K(fnka) · · ·)
=(4) f

n0(YG(K(fn1(· · ·YG(λa.fni+···+nka) · · ·)
=(3) f

n0(fn1+···+ni−1(YG(λa.fni+···+nka) · · ·)
= fn0+···+ni−1(YGf

ni+···+nk)

24 Endrullis, Hendriks, Klop, Polonsky

being what was required to show.

What conclusions can be drawn from this proposition? We know that a
generic member of G is determined by the numbers (k, i, n1, . . . , nk), 1 ≤ i ≤ k.
While it seems likely that all these generators are “unique” – in the sense that
when G 6= G′, there can be no finite conversion between YG and Y ′G – their
behaviors nevertheless collapse to the 2-parameter family

gm,n = λyf.fm(yfn)

We can now consider two pre-generators G,G′ ∈ G to be equivalent, if their
“reduced pump” λyf.fm(yfn) is the same.

Let us observe the execution of such a reduced generator:

YGf = fm(YGf
n)

= fm(fmn(YGf
n2

))

= fm(fmn(fmn
2

(YGf
n3

)))

=
...

= fm(1+n+···+nk)(YGf
nk+1

)

=
...

=

⊥ m = 0

fm⊥ n = 0

fω m,n > 0

Thus, every such generator gm,n with m,n > 0 leads to a wfpc-generator.
Conversely, the previous inhabitation argument shows that every finite simply
typed wfpc-generator is of this form.

Simple intuition now tells us that, in order thatG = gm,n be an fpc-generator,
it must transpire that m = n = 1. Indeed, thinking of a given (w)fpc Y as a
single “motor”, we are poised to measure its clock velocity by counting how
many fs it produces at each step, as well as how quickly it speeds itself up, by
changing f to an n-fold composition of it. If n > 1, then the clock perpetually
speeds itself up, so that YG cannot be an fpc. If n = 1 but m > 1, then the
clocks are indeed the same, but they are “de-synced” between the terms YGf
and f(YGf), because at k-th iteration the former will have km occurrences of f
at the head, while the latter will have km+ 1, which cannot be synchronized.

To complete the classification, it remains to ask which elements of G are
equivalent to g1,1. The answer brings us to the following result.

Theorem 23. Let G be a finite simply-typed fpc-generator. There are integers
l,m, n ≥ 0 such that

G = λyλf.f(y ◦ K)l(y(λa.(y ◦ K)m(f((y ◦ K)na))))

Clocks for Functional Programs 25

Remark 24. After the first iteration, it is seen that such a G exhibits the same
behavior as the simplified term g1,1 = δ = λyf.f(yf). It is precisely in this sense
that this generator, discovered by Corrado Böhm and being the first term to
be described as such, is unique. The uniqueness is with respect to the clocked
behavioral equivalence of fpc 1-generators. It is the minimal representative of
this equivalence class, being the only class of solutions that are candidate fpc-
generators.

Interestingly, the inhabitation problem also generates infinite solutions:

G = λyα
o

λfα→α.fn0(y(λa1.f
n1(y(λa2. · · ·) · · ·)

with no occurrences of ai.

Clearly, if ni = 0 for all i > 0, then G is not an fpc-generator, because

YGf = GYGf = fn0Z

where f /∈ FV(Z). Then BT(YGf) 6= fω.

Similarly, if ni = 0 for i > i0, then we can apply Step 2 of the above propo-
sition to get

YG(K(fn0(YG(K(fn1 · · · (YG(K(fni0Z) · · ·) = fΣZ

where Σ = n1 + · · ·+ ni0 . But f /∈ FV(Z). So

YGf = fn0(YG(K(fn1 · · ·) · · ·) = fΣZ 6= fω

(In this example, as well as the previous one, the term Z can be given ex-
plicitly: Z = YG(KZ) = (YG ◦K)ω.)

Conversely, if ni 6= 0 for infinitely many i, we have that

YGf = fM (· · ·)

for M larger than any given number. Thus YG is indeed a weak fixed point
combinator.

8 Further Questions

In this final section we discuss some important questions. In particular we point
to a conjecture which could have several deep consequences (see Section 8.3).
The conjecture connects the simply typed λβµ→-calculus with the untyped
λβ-calculus. If it is true, it would be a striking example of how simple types
can be used to obtain results in the pure untyped λβ-calculus.

26 Endrullis, Hendriks, Klop, Polonsky

8.1 Decidability of Fixed Point Combinators

The simultaneous restriction–extension of λβµ→ presents us with a more ab-
stract, high level view on fixed point combinators. For, the simple types restric-
tion disallows much of the possible complexity that fpc’s may possess – spurious
complexity one might say. In particular self-application in subterms is removed,
at least between subterms of the same type. Thus the formerly simplest fpc’s of
Curry and Turing, respectively

λf.(λx.f(xx))(λx.f(xx)) and (λab.b(aab))(λab.b(aab))

are ruled out, and in λβµ→ are replaced by the simpler

λx.µy.xy and µx.δx ,

respectively.
At this point, it is interesting to speculate how complicated fpc’s can be in

λβµ→. Is the notion of fpc still undecidable? Does Scott’s theorem used to show
the undecidability of the notion of fpc’s in pure lambda calculus still hold?

What number theoretic functions are definable in this calculus, when one
restricts to working with the Church numerals (of type α→ (α→ α)→ α)?

8.2 Comparison with PCF

When we extend the calculus to its infinitary version (see Figure 1), similar
questions can be asked. At present the meta-theory of the calculus λβµ→ is
not fully clear to us, in particular its relation to PCF where the native type of
natural numbers leads to Turing-completeness.

8.3 Completeness of µ-Reduction

The λβµ→-calculus can be interpreted in the untyped λβ-calculus by instanti-
ating the µ-constructor with any fixed point combinator Y .

Definition 25. Let Y be an fpc. For a simply typed λµ-term t, its Y -translation
|t|Y is defined by induction on t, as follows:

t |t|Y
x x

st |s|Y |t|Y
λyA.t λy.|t|Y
µzA.t Y (λz.|t|Y)

The following is a deep conjecture about fixed point combinators.

Conjecture 26. For any fpc Y and simply typed s, t we have:

|s|Y =β |t|Y ⇐⇒ s =βµ t .

Clocks for Functional Programs 27

Remark 27. (i) The direction ⇐ of the conjecture is trivial (soundness). The
interesting part is completeness, ⇒.

(ii) It is essential that the right-hand side involves types. Otherwise we have the
following ‘chiasm’ counterexample:

s = λz.z(µx.x)(Y (λx.x)) t = λz.z(Y (λx.x))(µx.x)

Then s 6=βµ t but |s|Y ≡ |t|Y .
(iii) It is also interesting to give the equivalent reformulation of the conjecture

for the λβY→-calculus.

To illustrate the fundamental importance of this conjecture, we show that its
positive resolution would yield immediate answers to questions posed by Plotkin,
Statman and Klop.

Question 28. (Plotkin) Does there exist an fpc Y such that |µx.µy.fxy|Y =
|µx.fxx|Y ?

The question of Plotkin has been answered in [EHKP12] using clocked Böhm
Trees. A positive answer to Conjecture 26 would yield this result immediately.

Corollary 29. If the conjecture holds, the answer to Plotkin’s question is “no”.

Proof. For Plotkin’s question, consider the terms s ≡ µx.µy.fxy and t ≡ µx.fxx.
As we noted before, these terms have the same infinitary normal form. However,
they are not finitely convertible (every reduct of s has nesting of µ’s whereas
no reduct of t has). Hence for no fpc Y are their images under the |·|Y map
convertible, yielding a negative answer to Plotkins question.

Question 30. (Statman) Is it the case that for no fpc Y we have Y δ = Y ?

A proof of this conjecture given by Intrigila [Int97] turned out to contain a
serious gap, see [EHKP13]. Thus the answer to this conjecture remains open. A
positive answer to Conjecture 26 would immediately imply Statman’s conjecture
as follows.

Corollary 31. If the conjecture holds, the answer to the conjecture of Statman
is “yes”.

Proof. Suppose there exists an fpc Y convertible with Y δ. Then Y δ =β Y δδ.
Let

s ≡ (λf.µx.fx)δ t ≡ (λf.µx.fx)δδ

It is not difficult to see that s and t are typable, and (∗) s 6=βµ t since the terms
have different clocks, see further the Böhm sequence in [EHKP12]. We have

|s|Y = (λf.Y (λx.fx))δ =β Y (λx.δx) =β Y δ |t|Y =β Y δδ

If Y δ =β Y δδ, then we have |s|Y =β |t|Y . However, then by Conjecture 26 we
get s =βµ t, contradicting (∗).

28 Endrullis, Hendriks, Klop, Polonsky

We briefly indicate that this method has much wider applicability, namely
establishing a conjecture by Klop [EHK10,EHKP12], generalizing Statman’s con-
jecture considerably. The conjecture refers to several fpc generating schemes, of
which the following are examples:

(G1) 2δ;
(G2) 2(SS)S∼nI for n ∈ N;
(G3) 2(AAA)A∼nII for n ∈ N.

Note that (G2) and (G3) are schemes of generating vectors. There are actually
infinitely many of such fpc-generating schemes, but we will stick with the three
as mentioned. They enable us to build fpcs in a modular way by repeatedly
adding a vector as given by one of the schemes, starting with some arbitrary fpc
Y .

Question 32. (Klop) Constructing fpcs in this way is a ‘free construction’ in that
never non-trivial identifications will arise: Let Y, Y ′ be fpc’s and let B1 . . . Bn,
C1 . . . Ck be picked from the fpc-generating vectors (i),(ii),(iii) above. Then we
have:

(i) Y B1 . . . Bn =β Y
′B1 . . . Bn iff Y = Y ′ ;

(ii) Y B1 . . . Bn =β Y C1 . . . Ck iff B1 . . . Bn ≡ C1 . . . Ck .

Already the restriction to (G1), the generating vector δ, is a generalization
of Statman’s conjecture, stating that Y δn 6= Y δm for any fpc Y and n 6= m
(instead of Y 6= Y δ). This indicates how non-trivial this conjecture is for the
general case. For the particular fpc Y0 we have partial results:

(i) The sequence Y0, Y0δ, Y0δδ,. . . is known as the Böhm sequence, and is known
to not contain any duplicates.

(ii) For Y0 in combination with the set of all generating vectors (G2), the con-
jecture has been proven in [EHKP12].

Both results can easily be extended to the setting of λβµ→. We therefore think
that there is hope to prove freeness of the construction for all generating vectors
(G1), (G2), (G3) for the λβµ→ calculus. Then a positive answer to Conjecture 26
would immediately yield a positive answer to Klop’s conjecture.

In view of the strong consequences of the Conjecture 26 one must expect
that the conjecture is indeed difficult to prove. Also a counterexample would be
very interesting. Even if the conjecture fails, or as a partial result towards the
conjecture, it would be interesting to determine a class of fixed point combinators
for which the conjecture holds.

References

[AK95] Z.M. Ariola and J.W. Klop. Equational Term Graph Rewriting. Technical
Report IR-391, Vrije Universiteit Amsterdam, 1995. ftp://ftp.cs.vu.

nl/pub/papers/theory/IR-391.ps.Z.

Clocks for Functional Programs 29

[Bar84] H.P. Barendregt. The Lambda Calculus. Its Syntax and Semantics, volume
103 of Studies in Logic and The Foundations of Mathematics. North-
Holland, revised edition, 1984.

[BDS13] H.P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus with
Types. Perspectives in Logic. Cambridge University Press, 2013.

[Ber85] I. Bercovici. Unsolvable Terms in Typed Lambda Calculus with Fix-Point
Operators. In Rohit Parikh, editor, Logics of Programs, volume 193 of
Lecture Notes in Computer Science, pages 16–22. Springer, 1985.

[BKdV00] I. Bethke, J.W. Klop, and R.C. de Vrijer. Descendants and Origins in
Term Rewriting. Information and Computation, 159(1–2):59–124, 2000.

[BN98] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[CC96] C. Coquand and T. Coquand. On the Definition of Reduction for Infinite
Terms. Comptes Rendus de l’Académie des Sciences. Série I, 323(5):553–
558, 1996.

[dMJB+] P. de Mast, J.-M. Jansen, D. Bruin, J. Fokker, P. Koopman, S. Smetsers,
M. van Eekelen, and R. Plasmeijer. Functional Programming in Clean.

[EGKvO11] J. Endrullis, C. Grabmayer, J.W. Klop, and V. van Oostrom. On Equal
µ-Terms. Theoretical Computer Science, 412(28):3175–3202, 2011.

[EHH+13] J. Endrullis, H.H. Hansen, D. Hendriks, A. Polonsky, and A. Silva. A
Coinductive Treatment of Infinitary Term Rewriting, 2013. Submitted.

[EHK10] J. Endrullis, D. Hendriks, and J.W. Klop. Modular Construction of Fixed
Point Combinators and Clocked Böhm Trees. In Proc. Symp. on Logic in
Computer Science (LICS 2010), pages 111–119, 2010.

[EHK12] J. Endrullis, D. Hendriks, and J.W. Klop. Highlights in Infinitary Rewrit-
ing and Lambda Calculus. Theoretical Computer Science, 464:48–71, 2012.

[EHKP12] J. Endrullis, D. Hendriks, J.W. Klop, and A. Polonsky. Discriminating
Lambda-Terms using Clocked Böhm Trees. Logical Methods in Computer
Science, 2012. In print.

[EHKP13] J. Endrullis, D. Hendriks, J.W. Klop, and A. Polonsky. Clocked Lambda
Calculus. Mathematical Structures in Computer Science, 2013. Accepted
for publication.

[EP13] J. Endrullis and A. Polonsky. Infinitary Rewriting Coinductively. In Proc.
Types for Proofs and Programs (TYPES 2012), volume 19 of LIPIcs, pages
16–27. Schloss Dagstuhl, 2013.

[HS08] J.R. Hindley and J.P. Seldin. Lambda-Calculus and Combinators. Cam-
bridge University Press, 2008.

[Hut07] Graham Hutton. Programming in Haskell. Cambridge University Press,
2007.

[Int97] B. Intrigila. Non-Existent Statman’s Double Fixed Point Combinator Does
Not Exist, Indeed. Information and Computation, 137(1):35–40, 1997.

[KdV05] J.W. Klop and R.C. de Vrijer. Infinitary Normalization. In We Will
Show Them: Essays in Honour of Dov Gabbay, volume 2, pages 169–192.
College Publ., 2005. Techn. report: http://www.cwi.nl/ftp/CWIreports/
SEN/SEN-R0516.pdf.

[KS09] J. Ketema and J.G. Simonsen. Infinitary Combinatory Reduction Systems:
Confluence. Logical Methods in Computer Science, 5(4):1–29, 2009.

[NI89] T. Naoi and Y. Inagaki. Algebraic Semantics and Complexity of Term
Rewriting Systems. In Proc. Conf. on Rewriting Techniques and Appli-
cations (RTA 1989), volume 355 of Lecture Notes in Computer Science,
pages 311–325. Springer, 1989.

30 Endrullis, Hendriks, Klop, Polonsky

[Pla84] R.A. Platek. Foundations of Recursion Theory. University Microfilms,
1984.

[Plo77] Gordon D. Plotkin. Lcf considered as a programming language. Theor.
Comput. Sci., 5(3):223–255, 1977.

[Smu85] R. Smullyan. To Mock a Mockingbird, and Other Logic Puzzles: Including
an Amazing Adventure in Combinatory Logic. Alfred A. Knopf, New York,
1985.

[Sta02] R. Statman. On The Lambda Y Calculus. In Proc. Symp. on Logic in
Computer Science (LICS 2002), pages 159–166. IEEE, 2002.

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 2003.

