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Abstract We present a new method for automatically proving termination of term
rewriting. It is based on the well-known idea of interpretation of terms where every
rewrite step causes a decrease, but instead of the usual natural numbers we use
vectors of natural numbers, ordered by a particular nontotal well-founded ordering.
Function symbols are interpreted by linear mappings represented by matrices. This
method allows us to prove termination and relative termination. A modification of
the latter, in which strict steps are only allowed at the top, turns out to be helpful in
combination with the dependency pair transformation. By bounding the dimension
and the matrix coefficients, the search problem becomes finite. Our implementation
transforms it to a Boolean satisfiability problem (SAT), to be solved by a state-of-
the-art SAT solver.
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1 Introduction

In the past few years the emphasis in the research area of termination of term
rewriting has been on proving termination automatically. Several tools have been

J. Endrullis
Department of Computer Science, Vrije Universiteit Amsterdam,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
e-mail: joerg@few.vu.nl

J. Waldmann
Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig,
Fb IMN, PF 30 11 66, 04251 Leipzig, Germany
e-mail: waldmann@imn.htwk-leipzig.de

H. Zantema (B)
Department of Computer Science, Technische Universiteit Eindhoven,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: h.zantema@tue.nl



196 J. Endrullis et al.

developed for this purpose. In the annual Termination Competition [3] these tools
are compared. This competition has given a new drive to the quest for automated
methods to obtain termination proofs for term rewriting.

The tools do apply established methods (path orderings, dependency pairs, inter-
pretations, labelings) as well as new methods (RFC match bounds). Two insights are
that general methods can be restricted to special cases, gaining efficiency without los-
ing too much power, and that combining methods may lead to strong improvements.
We present here one such phenomenon: termination proofs from interpretations
into a well-founded monotone algebra. This is a well-known general theme, but our
point is

– The special choice of the algebra and
– The special implementation of how to find suitable interpretations.

The carrier of the algebra consists of vectors of natural numbers on which we
define a well-founded ordering that is not total. Each function symbol is interpreted
by a suitable linear mapping. This method allows us to prove termination and
relative termination. It has been proposed for string rewriting by Hofbauer and
Waldmann [14]. In the present paper, we discuss its extension to term rewriting and a
modification that allows to prove relative top-termination, that is, a variant of relative
termination where the strict steps are allowed only on the top level. The latter is very
helpful when using the dependency pair transformation. In order to cover the two-
sorted nature of the dependency pair transformation, our monotone algebra setting
is presented many-sorted.

We have implemented the method by bounding the dimension and the matrix co-
efficients, resulting in a search problem with a finite but typically huge search space.
This is solved by transforming this finite search problem to a Boolean satisfiability
problem (SAT) and using the state-of-the-art SAT solver Minisat, version 2 [5]. This
performs surprisingly well on the Termination Problem Data Base [2]; see Section 8.

The main part of the paper is organized as follows. We present a many-sorted
monotone algebra framework for relative termination and relative top-termination
in Section 3, generalizing earlier results on monotone algebras. In Section 4 we
choose the matrix instance of this framework. In Section 5 we combine this with the
dependency pair method. Next, in Section 6 we compare our method with the matrix
method for string rewriting. Our implementation is described in Section 7, and its
performance is discussed in Section 8. In Section 9 we give some limitations of the
approach and discuss bounds on reduction lengths.

Our methods are illustrated by examples. They are kept simple for the sake of
presentation. Nevertheless, some of them cannot be proved to be terminating by any
of the tools that participated in the Termination Competition 2006 [3] and do not use
the techniques described in this paper.

A preliminary version of this paper appeared as [6].

2 Preliminaries

Let S be a nonempty set of sorts, and let � be an S-sorted signature, being a set of
operation symbols each having a fixed arity in S∗ × S. An S-sorted set A is defined
to consist of a set As for every s ∈ S. For an S-sorted set X of variable symbols let
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T (�,X ) be the S-sorted set of terms over � and X , that is, the smallest S-sorted set
satisfying

– xs ∈ T (�,X )s for all xs ∈ Xs, and
– If the arity of f ∈ � is ((s1, . . . , sn), s) and ti ∈ T (�,X )si for i = 1, . . . , n, then

f (t1, . . . , tn) ∈ T (�,X )s.

A term rewriting system (TRS) R over �,X is an S-sorted set in which for every
s ∈ S the set Rs consists of pairs (�, r) ∈ T (�,X )s × T (�,X )s, for which � �∈ Xs and
all variables in r occur in �. Pairs (�, r) are called rewrite rules of sort s and are usually
written as � → r.

An S-sorted relation → over an S-sorted set A is defined to be an S-sorted set for
which →s⊆ As × As for every s ∈ S.

A substitution σ : X → T (�,X ) is defined by a map σs : Xs → T (�,X )s for
every s ∈ S. These extend to terms in the obvious way.

For a TRS R the (S-sorted) top rewrite relation
top→R on T (�,X ) is defined by

t
top→R,s u if and only if there is a rewrite rule � → r ∈ Rs and a substitution σ : X →

T (�,X ) such that t = �σ and u = rσ . The (S-sorted) rewrite relation →R is defined
to be the smallest S-sorted relation satisfying

– If t
top→R u then t →R u, and

– If ti →R,si ui and t j = u j for j �= i, then f (t1, . . . , tn) →R,s f (u1, . . . , un) for every
f ∈ � of arity ((s1, . . . , sn), s) and every i = 1, . . . , n.

For S-sorted binary relations we write · for sortwise relation composition and ∗ for
sortwise transitive reflexive closure.

An S-sorted relation → is called well-founded or terminating if for no s ∈ S an
infinite sequence t1, t2, t3, . . . exists such that ti →s ti+1 for all i = 1, 2, 3, . . . .

A TRS R is called terminating if →R is well-founded. Termination is also called
strong normalization; therefore, the property of R being terminating is written as
SN(R).

A binary relation →1 is called terminating relative to a binary relation →2, written
as SN(→1 / →2), if for no s ∈ S an infinite sequence t1, t2, t3, . . . exists such that

– ti →1,s ti+1 for infinitely many values of i, and
– ti →2,s ti+1 for all other values of i.

We use the notation →1 / →2 to denote →∗
2 · →1 · →∗

2; it is easy to see that
SN(→1 / →2) coincides with well-foundedness of →1 / →2. We write SN(R/S)

as a shorthand for SN(→R / →S), and we write SN(Rtop/S) as a shorthand for

SN
(

top→R / →S

)
.

For S consisting of one element all of these S-sorted notions coincide with the
well-known corresponding notions in the one-sorted setting.

3 Monotone Algebras

A �-algebra (A, [·]) is defined to consist of an S-sorted set A, and for every f ∈ �

a function [ f ] : As1 × · · · × Asn → As, where ((s1, . . . , sn), s) is the arity of f . This
function [ f ] is called the interpretation of f .
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Let αs : Xs → As for every s ∈ S; this collection of maps αs is written as
α : X → A. We define the term evaluation [·, α] : T (�,X ) → A inductively by

[x, α] = αs(x),

[ f (t1, . . . , tn), α] = [ f ]([t1, α], . . . , [tn, α])

for f ∈ � and x ∈ Xs.

Definition 1 An operation [ f ] : As1 × · · · × Asn → As is monotone with respect to
an S-sorted binary relation → on A if for all ai, bi ∈ Asi for i = 1, . . . , n with ai →si bi

for some i and a j = bj for all j �= i we have

[ f ](a1, . . . , an) →s [ f ](b1, . . . , bn).

A weakly monotone �-algebra (A, [·], >,�) is a �-algebra (A, [·]) equipped with
two S-sorted relations >, � on A such that

– > is well-founded;
– > · � ⊆ >;
– For every f ∈ � the operation [ f ] is monotone with respect to �.

An extended monotone �-algebra (A, [·], >,�) is a weakly monotone �-algebra
(A, [·], >,�) in which, moreover, for every f ∈ � the operation [ f ] is monotone
with respect to >.

The combination >,� is closely related to the notion of reduction pair in the
dependency pair framework, for example, in [9]. A crucial difference is that the
relations in a reduction pair are relations on terms that are closed under substitutions,
while in our setting they are relations on the arbitrary (many-sorted) set A.

In the sequel we often omit sort information, for example, writing [t, α] > [u, α]
rather than [t, α] >s [u, α]. A TRS given without sort information is assumed to be
one-sorted; that is, S consists of one element.

The one-sorted version of extended monotone algebra where � is left implicit by
defining it as the union of > and equality is called well-founded monotone algebra
in [18, 19]. A main theorem states that a TRS is terminating if and only if there is
a well-founded monotone algebra (A, [·], >) such that [�, α] > [r, α] for every rule
� → r and every α : X → A. First we show that for relative termination we have a
similar characterization based on extended monotone algebras, but not on this earlier
version of well-founded monotone algebras.

Theorem 2 Let R, S be TRSs over a signature �. Then

1. SN(R/S) if and only if there exists an extended monotone �-algebra
(A, [·], >,�) such that [�, α] > [r, α] for every rule � → r in R and [�, α] � [r, α]
for every rule � → r in S, for every α : X → A.

2. SN(Rtop/S) if and only if there exists a weakly monotone �-algebra
(A, [·], >,�) such that [�, α] > [r, α] for every rule � → r in R and [�, α] � [r, α]
for every rule � → r in S, for every α : X → A.
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Proof For the “if” part of part 1 assume such an extended monotone algebra
(A, [·], >,�) exists; we have to prove SN(R/S). So, assume an infinite reduction

t1 →R∪S t2 →R∪S t3 →R∪S · · ·
containing infinitely many R-steps. Choose α : X → A arbitrary. Because of
monotonicity with respect to > we obtain [ti, α] > [ti+1, α] if ti →R ti+1, and because
of monotonicity with respect to � we obtain [ti, α] � [ti+1, α] if ti →S ti+1. Since
> ·� ⊆ > we obtain > ·�∗ ⊆ >; hence for ti →R ti+1 →∗

S t j we obtain [ti, α]> [t j, α].
Since there are infinitely many R-steps, this gives rise to an infinite decreasing
sequence with respect to >, contradicting well-foundedness.

The proof of the “if” part of part 2 is similar; now all →R-steps in the assumed

infinite reduction are
top→R-steps, by which monotonicity with respect to > is not

required.
For the “only if” part, assume SN(R/S) (respectively, SN(Rtop/S)) holds. Choose

A=T (�,X ), and [ f ](t1, . . . , tn)= f (t1, . . . , tn) for all f ∈�. Define >= (→R /→S)
+

and � = (→R∪S)
∗

(
respectively, > =

( top→R / →S

)+)
and � = →∗

S. Then (A, [·],
>,�) satisfies all requirements; where well-foundedness of > is concluded from
the assumption SN(R/S) (respectively, SN(Rtop/S)). �	

For the relations >,� we typically have in mind some more properties, such as
transitivity of both > and �, reflexivity of �, and � · > · � ⊆ > ⊆ �. From the proof
of Theorem 2, however, we see that these properties are not essential.

For this characterization of relative termination the general notion of extended
monotone algebra is essential: it does not hold for the restricted case where �
coincides with the union of > and equality, as is shown by the following example.

Example 1 Let R consist of the rule f ( f (x)) → f (g( f (x))), and let S consist of the
rule f (x) → g( f (x)). Define (A, [·], >,�) by

– A = N × N,
– [ f ](m, n) = (m + n, 1) for m, n ∈ N,
– [g](m, n) = (m, 0) for m, n ∈ N,
– (m, n) > (m′, n′) ⇐⇒ m > m′ ∧ n ≥ n′,
– (m, n) � (m′, n′) ⇐⇒ m ≥ m′ ∧ n ≥ n′.

It is easily checked that (A, [·], >,�) is an extended monotone algebra. Moreover, if
α(x) = (m, n) we obtain

[ f ( f (x)), α] = (m + n + 1, 1) > (m + n, 1) = [ f (g( f (x))), α]
and

[ f (x), α] = (m + n, 1) � (m + n, 0) = [g( f (x)), α],
proving SN(R/S) by Theorem 2. The reader may observe the matrix/vector flavor of
this proof; indeed this proof coincides with a proof found by the matrix method, as
will be described in this paper.

Assume that for R, S an alternative extended monotone algebra exists in which
� coincides with the union of > and equality and the properties of Theorem 2 hold.
Fix α arbitrarily. Then [ f (x), α] � [g( f (x)), α], so either [ f (x), α] = [g( f (x)), α] or
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[ f (x), α] > [g( f (x)), α]. The first case contradicts [ f ( f (x)), α]) > [ f (g( f (x))), α];
hence we have [ f (x), α] > [g( f (x)), α]. But then by monotonicity of [g] with respect
to > we obtain

[ f (x), α] > [g( f (x)), α] > [g(g( f (x))), α] > [g(g(g( f (x)))), α] > · · · ,

contradicting well-foundedness. Hence for this example it is essential that � differs
from the union of > and equality.

Now we arrive at the general theorem for extended monotone algebras as we will
use it for proving (relative) termination by matrix interpretations.

Theorem 3 Let R, S be TRSs over a signature �.

1. Let (A, [·], >,�) be an extended monotone �-algebra such that [�, α] � [r, α] for
every rule � → r in R ∪ S and every α : X → A. Let R′ consist of all rules � → r
from R ∪ S satisfying [�, α] > [r, α] for every α : X → A.
Then SN((R \ R′)/(S \ R′)) implies SN(R/S).

2. Let (A, [·], >,�) be a weakly monotone �-algebra such that [�, α] � [r, α] for
every rule � → r in R ∪ S and every α : X → A. Let R′ consist of all rules � → r
from R satisfying [�, α] > [r, α] for every α : X → A.
Then SN((R \ R′)top/S) implies SN(Rtop/S).

Proof For part 1 assume SN((R \ R′)/(S \ R′)). Take any infinite reduction with
respect to R ∪ S. From Theorem 2 part 1 we conclude SN(R′/(R ∪ S)), so this infinite
reduction contains only finitely many R′-steps. So after removing a finite initial
part, this reduction consists of only (R ∪ S) \ R′-steps. Since SN((R \ R′)/(S \ R′)),
this remaining part contains only finitely many R \ R′-steps. So the original infinite
reduction contains only finitely many R-steps. Hence we proved SN(R/S).

For part 2 assume SN((R \ R′)top/S). Take any infinite reduction with respect

to
top→R ∪ →S. From Theorem 2 part 2 we conclude SN(R′

top/(R ∪ S)), so this

infinite reduction contains only finitely many
top→R′ -steps. So after removing a fi-

nite initial part, this reduction consists of only
top→R\R′ -steps and →S-steps. Since

SN((R \ R′)top/S), this remaining part contains only finitely many
top→R\R′ -steps.

So the original infinite reduction contains only finitely many
top→R-steps, proving

SN(Rtop/S). �	

The basic way to apply Theorem 3 is as follows. If SN(R/S) (or SN(Rtop/S))
has to be proved, then try to find an extended (or weakly) monotone �-algebra
satisfying the conditions for which R′ is not empty. Then the proof obligation
is weakened to SN((R \ R′)/(S \ R′)) (or SN((R \ R′)top/S)). For this we again
apply Theorem 3 in the same way. This is repeated until R \ R′ = ∅, for which the
remaining proof obligation SN((R \ R′)/(S \ R′)) (or SN((R \ R′)top/S)) trivially
holds. Proving termination rather than relative termination is a special case of this
approach: then S is empty in SN(R/S).

If this approach finishes in one step, that is, R \ R′ = ∅, then also Theorem 2 could
have been applied with the same result, as we did for Example 1.
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In Example 4 we will show that in the setting of Theorem 2 part 2 it is not allowed
to remove rules from S: SN((R \ R′)top/(S \ S′)) does not imply SN(Rtop/S), where
S′ consists of the rules � → r from S satisfying [�, α] > [r, α] for every α : X → A.

Application of Theorem 3 is well known for the case where A consists of the
natural numbers, or natural numbers ≥ 2, all functions [ f ] are polynomials, and >

and � have their usual meaning. For part 1 strict monotonicity is required, while
for part 2 weak monotonicity is sufficient. In this polynomial case � coincides with
the union of > and equality. In the matrix interpretations in the vector algebras
considered in this paper, this is not the case for dimensions > 1.

4 Matrix Interpretations

In this paper we focus on interpretations based on matrices. For the basic version
this means that we fix a dimension d and construct a one-sorted extended monotone
algebra (A, [·], >,�) in which A = Nd. Without any complication this extends to
the many-sorted setting in which every sort has its own dimension. To keep the
presentation simple, here we restrict to the one-sorted case.

The relations > and � on A are defined as follows:

(v1, . . . , vd) > (u1, . . . , ud) ⇐⇒ v1 > u1 ∧ vi ≥ ui for i = 2, 3, . . . , d,

(v1, . . . , vd) � (u1, . . . , ud) ⇐⇒ vi ≥ ui for i = 1, 2, . . . , d.

All requirements for > and � from Definition 1 trivially hold. Note that � does
not coincide with the union of > and equality. Of course other orders on vectors
could have been chosen, too, but many of them are not suitable for our purpose.
For instance, choosing a lexicographic order fails because then multiplication by a
constant matrix is not monotone in general.

For the interpretation [c] of a symbol c ∈ � of arity 0 we choose any element of
A. For the interpretation [ f ] of a symbol f ∈ � of arity n ≥ 1 we choose n matrices
F1, F2, . . . , Fn over N, each of size d × d, such that the upper left elements (Fi)1,1 are
positive for all i = 1, 2, . . . , n, and a vector �f ∈ Nd. Now we define

[ f ](�v1, . . . , �vn) = F1�v1 + · · · + Fn�vn + �f
for all �v1, . . . , �vn ∈ A. One easily checks that [ f ] is monotone with respect to �.
Because of positiveness of the upper left matrix elements we also conclude that [ f ]
is monotone with respect to >. So, by choosing all [ f ] of this shape, all requirements
of an extended monotone algebra are fulfilled.

To apply Theorem 3, part 1, we should be able to check whether [�, α] � [r, α] or
[�, α] > [r, α] for all α : X → A, for given rewrite rules � → r. Let x1, . . . , xk be the
variables occurring in �, r. Then, because of the linear shape of the functions [ f ], we
can compute matrices L1, . . . , Lk, R1, . . . , Rk and vectors �l, �r such that

[�, α] = L1�x1 + · · · + Lk�xk + �l
and

[r, α] = R1�x1 + · · · + Rk�xk + �r,
where α(xi) = �xi for i = 1, . . . , k.
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For matrices B, C ∈ Nd×d write

B � C ⇐⇒ ∀i, j : (B)i, j ≥ (C)i, j.

The following lemma states how the conditions of Theorem 3 can be checked.

Lemma 4 Let L1, . . . , Lk, R1, . . . , Rk, and �l, �r correspond to a rewrite rule � → r as
described above. Then

1. [�, α] � [r, α] for every α : X → A if and only if

Li � Ri for i = 1, . . . , k, and �l � �r,
2. [�, α] > [r, α] for every α : X → A if and only if

Li � Ri for i = 1, . . . , k, and �l � �r, and l1 > r1.

Proof By definition [�, α] � [r, α] holds for every α : X → A if and only if for all
�x1, . . . , �xk ∈ Nd the vector

k∑
i=1

(Li − Ri)�xi + (�l − �r)

consists of non-negative numbers. If Li � Ri for i = 1, . . . , k, and �l � �r, then this
property holds because all entries of Li − Ri and �l − �r are non-negative.

Conversely, assume that this property holds. Then �l � �r holds by choosing all �xi

to be zero. Assume some entry of Li − Ri is strictly negative. Then choosing �x j to be
zero except for j = i and choosing all entries of �xi to be zero except for one chosen
to be large, we obtain a negative entry in

∑k
i=1(Li − Ri)�xi + (�l − �r), contradiction.

Hence all entries of Li − Ri are non-negative.
This proves the first item of the lemma; the second is similar, with the only

difference of strict inequality in the first argument. �	

Now the approach of applying Theorem 3, part 1, for proving SN(R/S) is as
follows:

– Fix a dimension d.
– For every symbol f ∈ � choose matrices Fi ∈ Nd×d for i = 1, 2, . . . , n for n

being the arity of f , such that the upper left elements (Fi)1,1 are positive for all
i = 1, 2, . . . , n, and a vector �f ∈ Nd.

– For every rule � → r ∈ R ∪ S we check whether Li � Ri for i = 1, . . . , k and �l � �r
for the corresponding matrices Li, Ri and vectors �l, �r as defined above.

– If this does not hold, the method fails.
– If this holds, then we remove all rules from R and S moreover satisfying l1 > r1.
– If the remaining R is empty, we are finished; otherwise we repeat the process

for the reduced TRSs R, S or apply any other technique for proving (relative)
termination.

In the sequel, we refer to this approach as the direct method.
Note that for our matrix interpretations after choosing the interpretation checking

whether a left-hand side is greater than (or greater than or equal to) a right-hand
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side is decidable from Lemma 4, in contrast to nonlinear polynomial interpretations.
For dimension d = 1 our matrix interpretations coincide with linear polynomial
interpretations.

In the implementation we transform the whole scheme into a SAT problem rather
than choosing Fi and �f several times and checking the conditions for Li, Ri, �l, �r
separately for every choice.

Example 1 can be seen as an instance of this approach, corresponding to the
choices

[ f ](�x) =
(

1 1
0 0

)
· �x +

(
0
1

)
, [g](�x) =

(
1 0
0 0

)
· �x +

(
0
0

)
.

Example 2 Consider the TRS consisting of the following rules.

h(g(s(x), y), g(z, u)) → h(g(u, s(z)), g(s(y), x))

s(s(x)) → s(x)

We choose A = N2 together with the symbol interpretations.

[h](�x, �y) =
(

3 0
0 0

)
· �x +

(
1 4
0 0

)
· �y

[g](�x, �y) =
(

3 3
0 0

)
· �x +

(
1 1
2 2

)
· �y

[s](�x) =
(

1 1
0 0

)
· �x +

(
0
1

)

Let α : X → A be arbitrary; write α(x) = �x, α(y) = �y, α(z) = �z and α(u) = �u.
Then we obtain

[h(g(s(x), y), g(z, u)), α]
=

(
9 9
0 0

)
· �x +

(
3 3
0 0

)
· �y +

(
3 3
0 0

)
· �z +

(
9 9
0 0

)
· �u +

(
9
0

)

>

(
9 9
0 0

)
· �x +

(
3 3
0 0

)
· �y +

(
3 3
0 0

)
· �z +

(
9 9
0 0

)
· �u +

(
6
0

)

= [h(g(u, s(z)), g(s(y), x)), α]

and

[s(s(x)), α] =
(

1 1
0 0

)
· �x +

(
1
1

)
>

(
1 1
0 0

)
· �x +

(
0
1

)
= [s(x), α].

By Theorem 3 we conclude that the system is terminating.
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As indicated by Lemma 4, in general we conclude [�, α] > [r, α] for arbitrary
α : X → A if we have a strict decrease in the first vector coefficient and ≥ for
all matrix coefficients and all other vector coefficients.

We conclude this section by an example of relative termination.

Example 3 Define R, S as follows; we want to prove SN(R/S).

R = {f (a, g(y), z) → f (a, y, g(y)), f (b , g(y), z) → f (a, y, z), a → b}

S = {f (x, y, z) → f (x, y, g(z))}.
We choose the following symbol interpretations:

[a] =
(

1
0

)
[b ] =

(
0
0

)

[ f ](�x, �y, �z) =
(

1 0
0 0

)
· �x +

(
1 2
0 0

)
· �y +

(
1 0
0 0

)
· �z +

(
0
0

)

[g](�x) =
(

1 0
1 1

)
· �x +

(
0
1

)

Thereby all rules in R ∪ S are weakly decreasing, i.e. all matrix coefficients in the
left hand side are greater or equal to the corresponding coefficients in the right hand
side. Moreover, all upper left matrix coefficients are nonzero and the rules in R are
strictly decreasing in the first coefficient. Hence by Theorem 3 all rules from R may
be removed, proving SN(R/S).

5 Top Reduction and Dependency Pairs

For a one-sorted TRS R a symbol f ∈ � is called a defined symbol if f is the
root symbol of a left hand side of a rule of R. For every defined symbol f ∈ �

a new marked symbol f# is added having the same arity as f . If f (s1, . . . , sn) →
C[g(t1, . . . , tm)] is a rule in R and g is a defined symbol of R, then the rewrite rule
f#(s1, . . . , sn) → g#(t1, . . . , tm) is called a dependency pair of R. The TRS consisting
of all dependency pairs of R is denoted by DP(R). We consider these TRSs R and
DP(R) to be S-sorted for S = {s, #}, and every f ∈ � has arity ((s, . . . , s), s) and its
marked version f# has arity ((s, . . . , s), #). So all rules in R are of sort s and all rules
of DP(R) are of sort #.

The main theorem about dependency pairs is the following, due to Arts and
Giesl [1].

Theorem 5 Let R be a one-sorted TRS. Then SN(R) if and only if SN(DP(R)top/R).

We will use this theorem for proving SN(R) by proving SN(DP(R)top/R) using
part 2 of Theorem 3. Many improvements of Theorem 5 are known, such as
dependency graph approximation and the usable rules criterion [8, 9], the subterm
criterion [9], and restriction to strongly connected components [1, 10]. By all of
these improvements SN(R) is proved by proving one or more instances of the



Matrix interpretations for proving termination of term rewriting 205

shape SN(Dtop/R′), where D ⊆ DP(R) and R′ ⊆ R. Our approach using part 2 of
Theorem 3 applies on these instances as well. For the presentation here we focus on
the basic version SN(DP(R)top/R).

For doing so by matrix interpretations we fix a dimension d as before and construct
a weakly monotone algebra (A, [·], >,�) in which As = Nd and A# = N. The reason
for choosing A# = N rather than A# = Nd is that this yields simpler interpretations
without losing power, as we will see.

The relation � on As = Nd is defined as before:

(v1, . . . , vd) � (u1, . . . , ud) ⇐⇒ vi � ui for all i = 1, 2, . . . , d;
the relation � on A# = N is the usual ≥ on N. However, for > on As = Nd we
now choose another relation than before: we choose > to be the empty relation.
The relation > on A# = N is the usual > on N. All requirements for > and � from
Definition 1 trivially hold.

For the interpretation [ f ] of a symbol f ∈ � of arity n ≥ 0 we define

[ f ](�x1, . . . , �xn) = F1�x1 + · · · + Fn�xn + �f
for n matrices F1, F2, . . . , Fn over N of size d × d, and a vector �f ∈ Nd. Note that
now we no longer require that the upper-left elements of the matrices be positive.
For the interpretation [ f#] of a marked symbol f# corresponding to f of arity n ≥ 0
we define

[ f#](�x1, . . . , �xn) = �f1�x1 + · · · + �fn�xn + cf

for n row vectors �f1, . . . , �fn over N of size d, and a constant cf ∈ N. Here �fi �vi denotes
the inner product, corresponding to matrix multiplication of a row vector by a column
vector.

As before [ f ] is monotone with respect to �. The same holds for [ f#]. By choosing
all [ f ] and [ f#] of this shape all requirements of a weakly monotone algebra are
fulfilled.

To apply Theorem 3, part 2, for rules in R, we check whether [�, α] � [r, α] for
all α : X → A for given rewrite rules as before. Checking whether [�, α] > [r, α] for
all α is required only for rules � → r in DP(R) being of sort #. This restriction can
be written as �l�x + cl > �r�x + cr for every vector �x over N, for vectors �l, �r and numbers
cl, cr implied by � → r. This is equivalent to �l � �r ∧ cl > cr. Similarly, for rules � → r
in DP(R) the requirement [�, α] � [r, α] for all α is equivalent to �l � �r ∧ cl ≥ cr.

As before, it is not required to do this in one run, having [�, α] > [r, α] for all α

for all rules � → r in DP(R). If this holds for some of the rules � → r in DP(R), and
for the others we have [�, α] ≥ [r, α], then by Theorem 3, part 2, we may remove the
rules with “>” from DP(R), and continue with the rest. Now we observe that it is not
allowed to remove rules from R: if we do then we get invalid results as is shown by
the next example.

Example 4 Let R consist of the two rules f (g(x)) → f (h(x)) and h(x) → g(x);
obviously R is not terminating.

The TRS DP(R) consists of the rules f#(g(x)) → f#(h(x)) and f#(g(x)) → h#(x).
By choosing A = N, and [ f#](n) = [h](n) = 1 and [h#](n) = [ f ](n) = [g](n) = 0 for
all n ∈ N we have a weakly monotone algebra, in which [�, α] ≥ [r, α] for all α for all
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rules � → r ∈ DP(R) ∪ R, and “>” for the rules h(x) → g(x) and f#(g(x)) → h#(x).
By removing these rules with “>” both from R and DP(R), the remaining proof
obligation would be SN({ f#(g(x)) → f#(h(x))}/{ f (g(x)) → f (h(x))}), which is easily
shown to hold.

It is also possible to keep the treatment of SN(DP(R)top/R) one-sorted on vectors
of size d, choosing > to be the strict part of �. However, then the search space
is much bigger because for every f# n matrices of size d × d plus a vector have to
be chosen, instead of n vectors of size d plus a constant, where n is the arity of f .
Every termination proof in this one-sorted setting also yields a termination proof in
the two-sorted setting as presented here, with the same bound on matrix and vector
elements. This can be seen as follows. If there is a proof in the one-sorted setting
then for at least one dependency pair the interpretation of the left-hand side strictly
exceeds the interpretation of the right-hand side. Since > is the strict part of �, there
is at least one dimension in which strict inequality appears. Then, by eliminating
all other dimensions an interpretation in our two-sorted setting is found by which
this particular dependency pair can be removed. By repeating the argument, the
full termination proof in the one-sorted setting can be mimicked in our two-sorted
setting. So, the two-sorted approach is as powerful but yields much smaller search
spaces; hence, this two-sorted approach is preferred.

Before giving an example, we summarize the approach. To prove SN(R), we try
to prove SN(Dtop/R), where initially D = DP(R), or any subset of DP(R) as implied
by variants of the dependency pair approach.

– Fix a dimension d.
– For every symbol f ∈ � choose matrices Fi ∈ Nd×d for i = 1, 2, . . . , n for n being

the arity of f , and a vector �f ∈ Nd.
– For every defined symbol f ∈ � choose n row vectors �f1, . . . , �fn over N of size

d for n being the arity of f , and a constant cf ∈ N, yielding the interpretation
for f#.

– For every rule � → r ∈ R we check whether Li � Ri for i = 1, . . . , k and �l � �r
for the corresponding matrices Li, Ri and vectors �l, �r as defined above, similar to
Section 4.

– For every rule � → r ∈ D we check whether �l � �r ∧ cl ≥ cr, for the correspond-
ing vectors �l, �r and scalars cl, cr defined by matrix / vector multiplications and
inner products as described above.

– If all these requirements hold, then we remove all rules from D moreover
satisfying cl > cr.

– If the remaining D is empty, we are finished; otherwise we repeat the process.

Example 5 Consider the TRS consisting of the following rule.

g(g(s(x), y), g(z, u)) → g(g(u, s(z)), g(s(z), x))

Using the dependency pairs transformation, we get three dependency pairs, two
of which do not contribute to a cycle within the approximated dependency graph.
The remaining dependency pair is

g#(g(s(x), y), g(z, u)) → g#(g(u, s(z)), g(s(z), x)).
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We choose the following interpretation with dimension d = 3 (i.e., As = N3,
A# = N).

[g#](�x, �y) = (0, 0, 1) · �x + (0, 1, 0) · �y

[g](�x, �y) =
⎛
⎝ 0 0 0

0 0 0
1 0 0

⎞
⎠ · �x +

⎛
⎝ 0 0 0

1 0 0
0 0 0

⎞
⎠ · �y

[s](�x) =
⎛
⎝ 1 0 0

0 0 0
0 0 0

⎞
⎠ · �x +

⎛
⎝ 1

0
0

⎞
⎠

For the rule g(g(s(x), y), g(z, u)) → g(g(y, z), g(x, s(u))) we obtain
⎛
⎝ 0

0
0

⎞
⎠ �

⎛
⎝ 0

0
0

⎞
⎠ ,

and for the remaining dependency pair

g#(g(s(x), y), g(z, u)) → g#(g(u, s(z)), g(s(z), x))

we obtain

(1, 0, 0) · �x + (0, 0, 0) · �y + (0, 0, 0) · �z + (1, 0, 0) · �u + 1

> (1, 0, 0) · �x + (0, 0, 0) · �y + (0, 0, 0) · �z + (1, 0, 0) · �u.

So, all rules are weakly decreasing, and the dependency pair is strictly decreasing
and thus can be removed. Hence the system is terminating.

In Section 8 we will see that in experiments this dependency pair approach often
succeeds where the basic matrix approach from Section 4 fails.

6 String Rewriting

Proving termination by matrix interpretations was first developed for string rewrit-
ing, as reported in [14, 15]. In this section we compare that approach with ours. In
particular we consider E{1,d} termination proofs as described in [14]. These are of the
following shape. To every symbol a a matrix A ∈ Nd×d is assigned, satisfying A1,1 > 0
and Ad,d > 0. To every left-hand side � a matrix L ∈ Nd×d is assigned, obtained by
replacing every a in � by the corresponding matrix A, and interpreting concatenation
as matrix multiplication. Similarly for every right hand side r a matrix R is assigned,
being the identity matrix in case r is empty. For every rule � → r it is required that
L � R. Proving termination of type E{1,d} now means that all rules are removed for
which Li, j > Ri, j for some i, j with i, j ∈ {1, d}.

We identify string rewriting with the special case of term rewriting in which all
symbols have arity 1.
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Theorem 6 Let R be a string rewriting system having a termination proof in the way
we described in Section 4 in dimension d. Then R has an E{1,d+1} termination proof in
dimension d + 1, as described in [14].

Proof For A ∈ Nd×d and �a ∈ Nd let M(A, �a) be the (d + 1) × (d + 1)-matrix
obtained from A by adding �a as a column to the right of A, and next adding the
row (0, . . . , 0, 1) below:

M

⎛
⎜⎝

⎛
⎜⎝

A1,1 · · · A1,d
...

...

Ad,1 · · · Ad,d

⎞
⎟⎠ ,

⎛
⎜⎝

a1
...

ad

⎞
⎟⎠

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

A1,1 · · · A1,d a1
...

...
...

Ad,1 · · · Ad,d ad

0 · · · 0 1

⎞
⎟⎟⎟⎠ .

In our setting in dimension d we assign to every symbol a a matrix A1 ∈ Nd×d and a
vector �a ∈ Nd, with [a](�v) = A1�v + �a. Since we assume a termination proof, we have
for every rule � → r corresponding d × d matrices L1, R1 and size d vectors �l, �r such
that L1 � R1 and �l � �r, while we remove the rules for which moreover l1 > r1. Now
for the E{1,d+1} termination proof we assign to a symbol a the corresponding matrix
M(A1, �a). Because of the shape of these matrices one easily checks that for every rule
� → r for the corresponding matrices L, R we have L = M(L1, �l) and R = M(R1, �r).
Now the requirements L � R follow from L1 � R1 and �l � �r, and for the rules to be
removed we have the extra property

L1,d+1 = M(L1, �l)1,d+1 = l1 > r1 = M(R1, �r)1,d+1 = R1,d+1,

proving that Li, j > Ri, j for some i, j with i, j ∈ {1, d + 1}. �	

A challenging example was the system Zantema-z086 from TPDB [2] consisting
of the three rules

aa → bc, bb → ac, cc → ab ,

occurring in the RTA list of open problems [16] as number 104. A solution of this
termination problem has been presented as Example 4 in [14] and first appeared
as [15]. Up to renaming, swapping of coordinates and transposing, the solution in
dimension 5 given there can be obtained by applying the transformation from the
proof of Theorem 6 to the following proof by our basic approach:

[a](�x) =

⎛
⎜⎜⎝

1 0 0 3
0 0 2 1
0 1 0 1
0 0 0 0

⎞
⎟⎟⎠ · �x +

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ , [b ](�x) =

⎛
⎜⎜⎝

1 2 0 0
0 2 0 1
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ · �x +

⎛
⎜⎜⎝

0
2
0
0

⎞
⎟⎟⎠ ,

[c](�x) =

⎛
⎜⎜⎝

1 0 0 1
0 0 0 1
0 1 0 1
0 2 0 0

⎞
⎟⎟⎠ · �x +

⎛
⎜⎜⎝

1
0
3
0

⎞
⎟⎟⎠ .

It is not clear how our basic approach relates to other instances of the matrix
method for string rewriting as presented in [14]. Neither it is clear how our de-
pendency pair version relates to the versions from [14] from a theoretical point of
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view. But applying the techniques in practice, our dependency pair version often
outperforms the other versions.

For instance, using dependency pairs, we find the following termination proof
for Zantema-z086. Here the dimension is 3 rather than 4. Because of this smaller
dimension, this proof was found much faster: in 3.5 s rather than 102 s for the proof
as presented above.

As a first step by simple counting arguments four of the six dependency pairs can
be removed; this can be seen as matrix interpretations of dimension 1. It remains to
prove SN(Dtop/R), where R consists of the original rules

aa → bc, bb → ac, cc → ab ,

and D consists of the two rules

a#a → b#c, b#b → a#c.

For these five symbols we get the following matrices and vectors:

[a](�x) =
⎛
⎝ 0 0 0

2 0 1
2 1 0

⎞
⎠ · �x +

⎛
⎝ 0

2
0

⎞
⎠ , [b ](�x) =

⎛
⎝ 0 0 0

0 0 1
1 0 2

⎞
⎠ · �x +

⎛
⎝ 0

0
2

⎞
⎠ ,

[c](�x) =
⎛
⎝ 0 0 1

2 0 2
1 0 0

⎞
⎠ · �x +

⎛
⎝ 0

4
0

⎞
⎠ ,

[a#](�x) = (0, 0, 1) · �x + 1, [b#](�x) = (0, 0, 1) · �x.

Now indeed we obtain “�” for all rules in R and “>” for all rules in D, proving
termination of R by Theorem 5.

Although in this latter proof in the substantial step five operation symbols are
involved rather than three, because of the smaller dimension in total only 44 entries
have to be established rather than 60 in the former proof. This is an indication why
this latter proof could be found so much faster.

We stress that, as far as we know, no termination proof of Zantema-z086 has
been found not using matrix interpretations. Although the system itself is very small
and has a nice symmetrical pattern, none of the known proofs provides any intuition
why this system is terminating.

7 Implementation

The method described in the previous sections has been implemented as follows.

7.1 Goal

The basic algorithm finds a matrix interpretation that allows to remove rules from a
termination problem, according to Theorem 3. It is called repeatedly until all rules
have been removed.
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Algorithm Remove:

– inputs

• a pair of rewrite systems (R, S) over signature �

• a flag f ∈ {Full, Top}
• numbers d, b , b ′

– outputs a matrix interpretation [·] such that

• if f = Full, then the interpretation fulfills the conditions
of Theorem 3, part 1, for a nonempty TRS R′;

• if f = Top, then the interpretation fulfills the conditions
of Theorem 3, part 2, for a nonempty TRS R′;

and with the side conditions that

• the interpretation [·] uses matrices of dimension d × d;
• all the coefficients in the matrices in the interpretations

of operation symbols are in the range 0 . . . 2b − 1;
• all the coefficients in the matrices in the interpretations

of rules are in the range 0 . . . 2b ′ − 1.

We do this in such a way that an interpretation is found if and only if it exists
with the given requirements. As described in Sections 4 and 5 the conditions for
Theorem 3 give rise to constraints on coefficients in vectors and matrices that
constitute the interpretations of the rules.

7.2 Steps

The implementation performs the following steps:

– Compress the rewriting systems (eliminate common subexpressions).
– Produce to a constraint system M for matrices.
– Transform to a constraint system N for numbers (integers).
– Transform to a constraint system B for Booleans.
– Transform to conjunctive normal form C.
– Call external SAT solver to find a satisfying assignment for C. If successful, apply

reverse transformations to reconstruct solutions of B, N, M.

At each level, we consider constraint systems that are a collection of

– Declarations of variables;
– Definitions (of a “variable” whose value is given by an expression involving

operations on other variables);
– Assertions (boolean combinations of inequalities between expressions).

We use the following example to present these steps in some detail.

Example 6

h(x, c(y, z)) → h(c(s(y), x), z)

h(c(s(x), c(s(0), y)), z) → h(y, c(s(0), c(x, z)))
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7.3 Matrix Constraints

For each function symbol f of arity n from the signature, we declare variables
f1, . . . , fn for square matrices of dimension d × d and a variable f0 for a (column)
vector of dimension d × 1. In Section 4 we wrote F1, . . . , Fn for f1, . . . , fn and
�f for f0. Identifying operation symbols with their interpretations we write f =
( f1, . . . , fn; f0).

Then, for each term, its interpretation can be computed as a symbolic expression.
For example, the translation of l = h(x, c(y, z)) is

h0 + h1 · x + h2 · (c0 + c1 · y + c2 · z),

and from r = h(c(s(y), x), z) we get

h0 + h1 · (c0 + c1 · (s0 + s1 · y) + c2 · x) + h2 · z.

For any variable v, denote by tv the coefficient of v in the interpretation of t. If v does
not occur, then this coefficient is 0 (the zero matrix). Denote by t0 the absolute part
of the interpretation of t.

Then the following constraint expresses that the interpretation is weakly compat-
ible with the rewriting systems:∧

{lv � rv | (l → r) ∈ R ∪ S, v ∈ {0} ∪ Var(l) ∪ Var(r)}.
For example, for the first rule of the example system, we obtain the following.

h0 + h2c0 � h0 + h1c0 + h1c1s0︸ ︷︷ ︸
absolute parts

∧ h1 � h1c2︸ ︷︷ ︸
coefficients of x

∧ h2c1 � h1c1s1︸ ︷︷ ︸
coefficients of y

∧ h2c2 � h2︸ ︷︷ ︸
coefficients of z

Finally, we require ∨
{l0 �=1 r0 | (l → r) ∈ R ∪ S},

where x �=1 y is defined for column vectors x, y by inequality in their first compo-
nents. Together with l0 � r0 this implies l0 > r0 as defined in Section 4. This implies
that Theorem 3 can be applied for a nonempty set R′.

There are several possibilities for optimizations, that is, producing an equivalent
constraint system that is smaller (contains fewer arithmetical operations). In the
following, we describe one such method.

7.4 Compression

We present a method for “common subexpression elimination.” It works by pre-
processing the rewrite systems. Each occurrence of a common subexpression, called
a pattern, is replaced by a fresh symbol that is added to the signature.

A pattern is a triple ( f, k, g) ∈ � × N × �. A pattern occurs at position p in a term
t if f is the root symbol of the subterm of t at position p and the kth child of that
occurrence of f is g. Assume f has arity m and g has arity n. If a pattern occurs more
than once in R ∪ S, then we define a new function symbol h of arity m − 1 + n = q.
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Then, the translation h �→ (h1, . . . , hq; h0) satisfies

∀0 ≤ i < k : hi = fi,

∀k ≤ i ≤ k + n − 1 : hi = fk · gi+1−k,

∀k + n ≤ i ≤ q : hi = fi+1−n.

This means that we introduce n + 1 additional variables to represent fk · g0, . . . ,

fk · gn.
We replace each (nonoverlapping) occurrence of

f (t1, . . . , tk−1, g(s1, . . . , sm), tk+1, . . . , tn),

for terms ti, si, with

h(t1, . . . , tk−1, s1, . . . , sm, tk+1, . . . , tn).

In the example, we use a new name a for the pattern (c, 1, s), which occurs four times,
obtaining

h(x, c(y, z)) → h(a(y, x), z)

h(a(x, a(0, y)), z) → h(y, a(0, c(x, z))).

The symbol a is represented by (c1s1, c2; c0 + c1s0).
In the next steps, b stands for the pattern (a, 1, 0) and d for (h, 1, a), the result

being

h(x, c(y, z)) → d(y, x, z)

d(x, b(y), z) → h(y, b(c(x, z))).

We will also apply the pattern e = (h, 1, b). It occurs only once but still allows for
a smaller matrix constraint system, since it allows to share the evaluation of h2 · b1.
The resulting rewrite system is

h(x, c(y, z)) → d(y, x, z)

d(x, b(y), z) → e(y, c(x, z)).

In all, the complete constraint system consists of the following parts. It has
unknowns for the interpretations of the symbols in the signature

0 = (00), c = (c1, c2; c0), h = (h1, h2; h0), s = (s1; s0),

definitions for patterns

a = (c1 · s1, c2; c0 + c1 · s0) b = (c2; a0 + a1 · 00)

d = (h1 · a1, h1c2; h0 + h1 · a0) e = (h1, h2 · c2; h0 + h2 · b0),

definitions for left- and right-hand sides of rules

l1 = (h1, h2c1, h2 · c2; h0 + h2 · c0) r1 = (d2, d1, h2; d0)

l2 = (d1, d2 · c2, h2; d0 + d2 · b 0) r2 = (e2 · c1, h1, e2 · c2; e0 + e2 · c0),
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and constraints between values

(
l1
0 � r1

0 ∧ l1
1 � r1

1 ∧ l1
2 � r1

2 ∧ l1
3 � r1

3

)

∧
(

l2
0 � r2

0 ∧ l2
1 � r2

1 ∧ l2
2 � r2

2 ∧ l2
3 � r2

3

)

∧
(

l1
0 �=1 r1

0 ∨ l2
0 �=1 r2

0

)
.

In general, the number of unknowns of the constraint system is bounded by |�| ·
(a + 1), where a is the maximal arity; the number of arithmetic operations is bounded
by ‖R ∪ S‖ · (a + 1), where ‖R‖ denotes the total size of a rewriting system (sum of
sizes of terms in left- and right-hand sides); and the number of assertions is bounded
by 2 · |R ∪ S| · (a + 1), where |R| denotes the number of rules of R.

7.5 Numbers

In the following step, this matrix constraint system is transformed into a constraint
system for numbers (integers). As expressions we allow variables, constants (for zero
and one), and sums and products of expressions.

Each matrix variable a of dimensions m × n results in m · n integer variables
ai, j with 1 ≤ i ≤ m, 1 ≤ j ≤ n. Matrix addition and multiplication are translated
according to their definitions.

An assertion a � b for matrices is translated into
∧{ai, j ≥ bi, j | i, j }. An assertion

a �=1 b for column vectors is translated into a1 �= b1.

7.6 Bits

In this step, the integer constraint system is transformed into a Boolean constraint
system. Each integer variable is translated into a sequence of propositional variables,
denoting the number’s binary expansion. Then, addition and multiplication are
implemented as circuits. In this translation, we use a fixed bit width. The full results
of addition and multiplication will have additional bits. Restricting to a fixed width
implies that additional bits will be asserted to be zero.

An example for binary addition of bit width 3 is (x0, x1, x2)+(y0, y1, y2). We
introduce fresh variables r0, r1, r2 for the result and c0, c1, c2 for the carry bits,
defined by

c0 = x0 ∧ y0 r0 = x0 xor y0

c1 = ≥2 (x1, y1, c0) r1 = x1 xor y1 xor c0

c2 = ≥2 (x2, y2, c1) r2 = x2 xor y2 xor c1

together with the assertion “c2 = False” to ensure that the result (r0, r1, r2) is correct
(without overflow). Here ≥2 (x, y, z) is True iff at least two of the inputs are True;
that is, ≥2 (x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z).
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Multiplication uses iterated addition and shift operations. The product
(x0, x1, . . . , xn) · (y0, . . . , yn) is defined (recursively) to be (a0, c1, . . . , cn), where the
ai, bi, ci are given by

a0 = x0 ∧ y0 a1 = x0 ∧ y1 . . . an = x0 ∧ yn

(b1, . . . , bn) = (x1, . . . , xn) · (y0, . . . , yn−1)

(c1, . . . , cn) = (a1, . . . , an) + (b1, . . . , bn),

and we assert x1 ∧ yn = False to prohibit overflow.

7.7 Conjunctive Normal Form

Finally, this Boolean constraint system is brought into conjunctive normal form
(CNF) by a Tseitin transform: for each subexpression, we introduce a variable,
together with CNF constraints that make the value of the variable equal to the value
of the expression.

We use the following translations.

– Logical or: x = (x1 ∨ . . . ∨ xn) gives (¬x1 ∨ x) ∧ . . . ∧ (¬xn ∨ x) ∧ (x1 ∨ . . .∨
vn ∨ ¬x),

– Logical and: x = (x1 ∧ . . . ∧ xn) gives (¬x1 ∨ . . . ∨ ¬xn ∨ x) ∧ (x1 ∨ ¬x) ∧ . . . ∧
(xn ∨ ¬x),

– Exclusive-or: x = (x1 xor x2) gives (x1 ∨ x2 ∨ ¬x) ∧ (x1 ∨ ¬x2 ∨ x) ∧ (¬x1∨
x2 ∨ x) ∧ (¬x1 ∨ ¬x2 ∨ ¬x)

– Majority (for three arguments) ≥2 (x1, x2, x3) = x gives (x1 ∨ x2 ∨ ¬x) ∧ (x1 ∨
x3 ∨ ¬x) ∧ (x2 ∨ x3 ∨ ¬x) ∧ (¬x1 ∨ ¬x2 ∨ x)∧(¬x1 ∨ ¬x3 ∨ x)∧(¬x2 ∨ ¬x3 ∨ x)

The algorithm for n-bit addition gives rise to 2n fresh variables and 14n clauses
in the conjunctive normal form, and n-bit multiplication requires 3

2 n2 fresh Boolean
variables and 9n2 clauses.

For the running example of this section, we give the sizes of the constraint systems
that are obtained when using matrix dimension 3, bit width 2 in interpretations, and
bit width 3 in computations.

Constraint System for Matrices Numbers Booleans CNF

Size 93 1280 23530 60293

Here, “size” means total program size: sum of sizes of expressions in definitions and
assertions. The conjunctive normal form has 5754 variables and 22268 clauses. A
satisfying assignment is found in less than one second.

8 Performance Measurements

In this section we will analyze the performance of the matrix method under various
setting on the TRS part of the Termination Problem Database 2006 (TPDB). This
problem set was the basis of the 2006 Termination Competition and is available via
[3]. It consists of 865 TRS, among which 686 could be proved to be terminating by any
of the six participating tools; the rest contains both nonterminating TRSs and TRSs
for which the termination behavior is unknown or established only by a human.
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By direct method we mean pure matrix interpretations, that is, without use of
any other termination methods such as dependency pairs. Likewise the method
with dependency pairs stands for the combination of matrix interpretations with the
dependency pairs framework. A huge number of methods have been developed for
the dependency pairs framework. In our implementation we restrict ourselves to the
most basic methods, since our goal is to analyze the strength of the matrix method.
In particular, we use dependency graph approximation and the usable rules criterion
[8, 9] and the subterm criterion [9] and compute strongly connected components as
in [10]. Table 1 presents our results. We emphasize that we did not apply any of the
following techniques: recursive path order, argument filtering, and semantic labeling,
as they were considered sometimes to be essential for any serious termination tool.
In the table, dependency pairs + stands for ‘Termination Competition 2006’ version
of Jambox. In particular it is the extension by the transformation of applicative
TRSs into functional form as described in [12], and rewriting of right-hand sides [20],
lexicographic path order with argument filtering and semantic labeling.

For these results we took the time limit of 1 min, just as in the Termination Com-
petition. However, this time was hardly ever consumed; the average computation
time for all proofs is around 2 s. The full results, including all proofs generated by
Jambox, are available via [17].

In the Termination Competition 2006 there were 17 examples that could be
proved only by using our approach (all other participating tools failed).

In the subcategory “Relative Termination” of the Termination Competition 2006,
Jambox scored 27 points, 24 of which were achieved by using only the direct method.
Among these 24 proofs 12 are done with dimension one, 10 with dimension two, and
2 with dimension three.

Table 2 shows the average size of SAT encodings of the constraints for various
dimensions d. It was calculated over the TRS part of the TPDB 2006 by using the
bit-length b = b ′ = 3 (for all dimensions) and 1-min timeout per method. Minisat
performs very well on the small dimensions 1 and 2. It even recognizes 99% of the
unsolvable instances in around 2 s. Increasing the dimension to 3 or 4 has a negative
impact on the performance. For dimension 4 the probability of running into timeout
skyrockets to 17%, bringing along a loss of 5% of the solutions found with smaller
dimensions. Nevertheless, the average time for successful attempts is around 2.5 s
for dimension 3 and 7 s for dimension 4. Therefore, it is usually a good strategy to
increase the dimension d stepwise, adjusting individual timeouts for every dimension.

Table 1 Performance results of several methods

Method Dimension Initial Result Cumulative
d bits b bits b ′ YES score

Direct 1 4 5 139
Direct 2 2 3 222
Direct 3 3 4 238
Dependency pairs 1 4 5 463
Dependency pairs 2 2 3 533
Dependency pairs 3 2 3 540
Dependency pairs 4 2 3 541
Dependency pairs + 4 2 3 626
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Table 2 Average size of SAT
encodings of constraints for
various dimensions

Dimension Number of Number of Time Timeout (%)
variables clauses

1 800 4,500 0.2 s 0
2 4,700 30,000 1.9 s 1.2
3 13,500 88,000 6.8 s 6.9
4 26,500 175,000 13.8 s 16.6

9 Limitations and Reduction Lengths

Because of the special linear shape of our interpretations, our approach is not always
successful. In this section we give examples for which matrix interpretations fail,
and we discuss bounds on reduction lengths. It turns out that if a direct matrix
interpretation can be given yielding “>” for all rules, then reduction lengths of
terms of size n are bounded by Cn for some constant C. If a sequence of matrix
interpretations is given as described in Section 4, then this no longer holds, but the
reduction length is still bounded by a primitive recursive function. For the approach
of Section 5 using dependency pairs this does not hold any more: we give an example
of a TRS with a termination proof in this style allowing reduction lengths dominating
Ackermann’s function.

First we give three examples of terminating TRSs for which we show by three
different arguments that a termination proof using only our matrix interpretation
approach does not exist, not even in the setting of dependency pairs as described
in Section 5. For all three TRSs, termination is easy to prove by other methods, for
example, by semantic labeling or by analysis of strongly connected components in
the approximated dependency graph.

Example 7 Consider the ground TRS consisting of the following two rules:

f (a, b) → f (b , b), f (b , a) → f (a, a).

Assume we have a termination proof in the style of Section 5, with

[ f#](�x, �y) = �f1�x + �f2 �y + cf

and [a] = �a and [b ] = �b . Then we have

�f1�a + �f2
�b + cf = [ f#](�a, �b) ≥ [ f#]( �b , �b) = �f1

�b + �f2
�b + cf ,

yielding �f1�a ≥ �f1
�b , and

�f1
�b + �f2�a + cf = [ f#]( �b , �a) ≥ [ f#](�a, �a) = �f1�a + �f2�a + cf ,

yielding �f1
�b ≥ �f1�a, where at least one of the inequalities should be strict, which is

clearly impossible.

Example 8 Consider the TRS consisting of the single rule

f (x, x) → f (x, g(x)).
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Assume we have a termination proof in the style of Section 5, with

[ f#](�x, �y) = �f1�x + �f2 �y + cf , [g](�v) = G�v + �g.

Choosing α(x) = �0, we have

cf = [ f#(x, x), α] > [ f#(x, g(x)), α] = �f2 �g + cf ,

which is impossible because of the non-negative coefficients of �f2 and �g.

Example 9 Consider the well-known TRS originating from [4] consisting of the
single rule

f (a, b , x) → f (x, x, x).

Assume we have a termination proof in the style of Section 5, with

[ f#](�x, �y, �z) = �f1�x + �f2 �y + �f3�z + cf ,

and [a] = �a and [b ] = �b . Choosing α(x) = �a + �b , we have

�f1�a + �f2
�b + �f3(�a + �b) + cf = [ f#(a, b , x), α]

> [ f#(x, x, x), α]
= �f1(�a + �b) + �f2(�a + �b) + �f3(�a + �b) + cf ,

yielding �0 > �f1
�b + �f2�a, which is impossible because of non-negative coefficients.

Note the difference in the arguments for these three examples: in Example 8 the
variable is interpreted by the smallest vector �0, in Example 9 it is interpreted by a
large vector, and in Example 7 no variable occurs at all.

Next we investigate reduction lengths in TRSs for which termination is proved by
matrix interpretations.

Lemma 7 Let R be a TRS for which there is a direct matrix interpretation satisfying
[�, α] > [r, α] for all rules � → r and all α. Then there is a constant C such that
reduction lengths of terms of depth n are bounded by Cn.

Proof Without loss of generality we may restrict to ground terms, by which α in
[t, α] may be omitted. For a vector �v we define its norm N(�v) by N(�v) = ∑d

i=1 �vi. For
a matrix A ∈ Nd×d we define CA = ∑d

i=1

∑d
j=1 Aij, yielding

N(A�v) =
d∑

i=1

d∑
j=1

Aij�vi ≤
d∑

i=1

d∑
j=1

Aij

d∑
k=1

�vi = CA N(�v)

for all �v ∈ Nd. Choose C to be the sum of all CA and N( �f ), where f ranges over all �

and A ranges over all matrices occurring in the interpretations of symbols. Then it is
easily proved by induction on n that N([t]) ≤ Cn for every term t of depth n. From the
definition of N we obtain [t]1 ≤ Cn. Since in every reduction step the first coordinate
of the interpretation of the term strictly decreases, the length of a reduction starting
in t cannot be longer than [t]1 ≤ Cn. �	
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The next example shows that for this lemma it is essential that the proof can be
given in one round yielding “>” for all rules.

Example 10 Let the TRS consist of the following four rules:

d(0) → 0, d(s(x)) → s(s(d(x))), e(0) → s(0), e(s(x)) → d(e(x)).

Clearly d describes doubling of natural numbers, and e describes exponentiation,
yielding a reduction from en(0) to s f (n)(0) of length �( f (n)), where f is the super ex-
ponential function defined by f (0) = 1, f (k + 1) = 2 f (k). Now we prove termination
by the direct method in a number of rounds.

By choosing a one-dimensional interpretation in which [s](x) = [d](x) = x,
[e](x) = x + 1 and [0] = 1, we remove the rule e(0) → s(0). Next, by choosing

[s](�x) =
(

1 0
0 1

)
· �x +

(
0
1

)
, [0] =

(
1
0

)
,

[d](�x) =
(

1 0
0 2

)
· �x, [e](�x) =

(
1 1
0 0

)
· �x

we remove the rule e(s(x)) → d(e(x)). Finally, by choosing a one-dimensional inter-
pretation in which [s](x) = x + 1, [d](x) = 3x, and [0] = 1, we remove the remaining
two rules, proving termination.

Although not exponential any more, a similar argument as in Lemma 7 shows
that if a termination proof is given by the direct method in a number of rounds,
reduction lengths are still bounded by a primitive recursive function in the size of the
initial term. However, the next example shows that this does not hold any more when
combining the method with dependency pairs as in Section 5, even when using only
dimension d = 1.

Example 11 In [13] it was shown that the TRS consisting of the two rules

s(x) + (y + z) → x + (s(s(y)) + z),

s(x) + (y + (z + w)) → x + (z + (y + w))

admits reduction lengths dominating Ackermann’s function. Take the depen-
dency pair transformation. By choosing [+#](x, y) = x + y, [+](x, y) = x + y + 1
and [s](x) = x, that is, counting the number of +-symbols, we remove the three
dependency pairs decreasing the number of +-symbols. In a second round the
remaining dependency pairs are removed by choosing [+#](x, y) = x, [+] arbitrary
and [s](x) = x + 1, proving termination.

10 Conclusions

The idea of using matrix interpretations for termination proofs for string rewriting
was developed by Hofbauer and Waldmann [14, 15]. It allowed them to prove
termination for {aa → bc, bb → ac, cc → ab}. In this paper we showed how to
extend this approach to term rewriting successfully. A crucial ingredient is taking
linear combinations of matrix interpretations for symbols of arity > 1.
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In the results on the benchmark database TPDB we see a big jump when in-
creasing the dimension from 1 (representing linear polynomial interpretations) to 2.
Increasing the dimension from 2 to higher values yields only a minor improvement,
while then the sizes of the satisfiability formulas strongly increase. By adding the
dependency pairs approach, an enormous jump is achieved again: then using only
linear polynomial interpretations (d = 1) already reaches a score of 463 points. In the
Termination Competition 2006 this would have been a remarkable second place, and
a third place if TTT [11] had participated, too. Finally, our highest score of 626 for
dependency pairs + indeed yielded the second place for Jambox in this competition:
just below the winning score of 638 for AProVE [7].

We stress that among the 626 TRSs for which termination was proved by Jambox,
for several (17) of them Jambox and/or Matchbox were the only tools that found a
proof in the Termination Competition 2006.

About the success of our approach in the Termination Competition we observe
the following:

– Apparently the old idea of well-founded interpretations applies well when ap-
plied to vectors and linear operations on them, represented by matrices.

– Apparently applying this method in the setting of dependency pairs makes this
even more powerful.

– Typically the search space for the corresponding interpretations is huge and
intractable; therefore, direct search in this space has to be replaced by a more
dedicated way of constraint solving. Apparently transforming the search prob-
lems to satisfiability problems and applying a state-of-the-art SAT solver serve
well for this goal.
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