
Decomposing Terminating Rewrite Relations

Jörg Endrullis1, Dieter Hofbauer2, and Johannes Waldmann3

1 Department of Computer Science, Vrije Universiteit Amsterdam
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands.

Email: joerg@few.vu.nl
2 Mühlengasse 16, D-34125 Kassel, Germany.

Email: dieter@theory.informatik.uni-kassel.de
3 Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig

Fb IMN, PF 30 11 66, D-04251 Leipzig, Germany.
Email: waldmann@imn.htwk-leipzig.de

1 Introduction

We decompose an arbitrary rewrite relation into the product of a context-free
system and an inverse context-free system with empty right-hand sides. By re-
quiring both of these relations to be terminating, we lose computational com-
pleteness and arrive at the class of deleting rewriting systems [5].

Our new treatment allows to efficiently construct the rewrite closure of a reg-
ular language with respect to deleting or match-bounded [3] rewriting. Previous
implementations of this method either used a complete but inefficient decomposi-
tion algorithm [5] leading to impracticable resource consumption, or incomplete
approximation algorithms [4]. Our new algorithm is both efficient and exact,
thereby improving the power of automated termination provers that use the
method of match-bounds.

2 Decomposing String Rewriting Systems

We denote context-free rewriting systems CF = {R | ∀(`→ r) ∈ R : |`| ≤ 1}, its
subclass CF0 = {R | ∀(` → r) ∈ R : |`| = 0} and SN = {R | SN(→R)}. For a
class C of string rewriting systems let C− = {R− | R ∈ C}.

Definition 1. Let R be a string rewriting system over Σ, let S and T be string
rewriting systems over Γ ⊇ Σ. Then the pair (S, T) is a decomposition of R if

→∗R = (→∗S ◦→∗T) ∩ (Σ∗ ×Σ∗).

If additionally S ∈ S and T ∈ T for classes of string rewriting systems S and
T , then (S, T) is called an (S, T)-decomposition of R.

The set of strings over a given alphabet is a monoid w.r.t. to concatenation,
but this operation is not invertible. We introduce formal left and right inverses
of letters. For a given alphabet Σ, define alphabets

−→
Σ = {−→a | a ∈ Σ} and

←−
Σ = {←−a | a ∈ Σ}, and let Σ = Σ ∪

−→
Σ ∪

←−
Σ . We extend −→ and ←− from letters

to strings by −−−−−→a1 · · · an = −→an · · · −→a1 and ←−−−−−a1 · · · an = ←−an · · ·←−a1. The behaviour of
inverse letters is expressed by the rewriting systems

−→
EΣ = {−→a a → ε | a ∈ Σ}

and
←−
EΣ = {a←−a → ε | a ∈ Σ}. We write

−→
E for

−→
EΣ and

←−
E for

←−
EΣ , if Σ is clear

from the context. Let E =
−→
E ∪
←−
E . Observe that −→x x→∗E ε←∗E x←−x for x ∈ Σ∗.

The above construction is standard. The congruence relation generated by →E

is called the Shamir congruence in [6] II.6.2.

Definition 2. For string rewriting systems R and S over Σ write R y S if
S results from R by replacing a rule xa → r by x → r−→a , or replacing a rule
ax→ r by x→←−a r, where a ∈ Σ. Let ∼ denote the equivalence generated by y.
We say that R and S are conjugates if R ∼ S.

A finite system R has only finitely many conjugates, among them R, so the
union of all its conjugates is finite. In the sequel, we denote this union by C(R).

Lemma 1. For every string rewriting system R over Σ,

(1) →∗C(R)∪E ∩ (Σ∗ ×Σ∗) ⊆ →∗R (correctness), and
(2) →∗R ⊆ →∗C ◦→∗E (completeness), for every context-free conjugate C of R.

Theorem 1. Let R be a string rewriting system over Σ. Then (C(R), E) is a
decomposition of R, and if C is a context-free conjugate of R, then (C,E) is a
(CF,CF−0)-decomposition of R.

Every string rewriting system has a (CF,CF−0)-decomposition (C,E). We are
especially interested in terminating decompositions.

Definition 3. A string rewriting system R over Σ is called deleting if there is
an irreflexive partial ordering > on Σ such that for each (` → r) ∈ R there is
some letter a in ` so that for each letter b in r, a > b.

Lemma 2. For a string rewriting system R, the following conditions are equiv-
alent: (1) There is a terminating context-free conjugate of R. (2) R is deleting.

Corollary 1. Let R be a deleting string rewriting system, then

(1) R has a (SN∩CF, SN∩CF−0)-decomposition, and
(2) [5] R preserves regularity and R− preserves context-freeness.

Example 1. The rewriting system R = {ba → cb, bd → d, cd → de, d → ε}
is deleting w.r.t. the ordering a > b > c > d > e. A terminating context-free
conjugate of R is C = {a→

←−
b cb, b→ d

−→
d , c→ de

−→
d , d→ ε}.

Following [3], we annotate letters by numbers, called match heights, to get
more detailed information on rewrite sequences. We switch to the extended
alphabet Γ = Σ × N and abbreviate an for (a, n) in Γ . Define morphisms
base : Γ → Σ, height : Γ → N, and, for n ∈ N, liftn : Σ → Γ by base(an) = a,

2

height(an) = n and liftn(a) = an. For a rewriting system R over Σ where
ε /∈ lhs(R) define the rewriting system

match(R) = {`′ → liftm+1(r) | (`→ r) ∈ R, base(`′) = `, m = min height(`′)}

over Γ . It simulates R-rewriting as →∗R = lift0 ◦→∗match(R) ◦ base. For a system
S over Σ ×N let Sc denote the restriction of S to Σ ×{0, . . . , c}. The system R
is called match-bounded by c ∈ N if →∗match(R)(lift0(Σ

∗)) ⊆ (Σ × {0, . . . , c})∗.
Each system matchc(R) is deleting w.r.t. the ordering defined by am > bn if

m < n and hence has a (SN∩CF,SN∩CF−0)-decomposition (C,E). Due to the
special and uniform structure of match(R), this decomposition can be improved.
Giving up uniqueness of the inverses, we increase the “computational power” of
inverses in using the rewriting system

E′ = {−→aiaj → ε, aj
←−ai → ε | a ∈ Σ, j ≥ i ≥ 0},

again over Γ . In this extended sense, −→a2 becomes the left inverse of all letters
a2, a3, . . . , for instance. Note that E ⊆ E′ and C ′ ⊆ C. With these more general
inverses we obtain a succinct and efficient decomposition of match(R).

C ′ = {lifti(a)→ lifti(←−x) lifti+1(r) lifti(−→y) |
(xay → r) ∈ R, a ∈ Σ, x, y ∈ Σ∗, i ≥ 0}

Theorem 2. (C ′, E′) is a (SN∩CF,SN∩CF−0)-decomposition of match(R).

Corollary 2. (C ′c, E
′
c) is a (SN∩CF,SN∩CF−0)-decomposition of matchc(R).

Corollary 3. Every match-bounded string rewriting system has a (SN∩CF,
SN∩CF−)-decomposition.

Example 2. Take R = {aa → aba}, and consider decompositions of match2(R).
This is Example 1 from [4], which contains a (SN∩CF,SN∩CF−) decomposition
where both parts have 7 rules. By Corollary 2 we get C ′2 = {a0 →←−a0a1b1a1, a0 →
a1b1a1

−→a0, a1 → ←−a1a2b2a2, a1 → a2b2a2
−→a1} with 4 rules, and E′2 = {−→a0a0 →

ε, −→a0a1 → ε, . . .} with 24 rules. In contrast, C2 contains C ′2 and 6 additional
rules a0 →←−a1a1b1a1, a0 → a1b1a1

−→a1, . . ., while E2 ⊂ E′2 and |E2| = 12.

The result states that the drastic reduction from Cc to C ′c can be compensated
by moderately enlarging Ec to E′c. Note that |C ′c| ≤ |R| · m · c and |Cc| ≤
|R| ·m · (c + 1)m for m = max{|`| | ` ∈ lhs(R)}, whereas |E′c| = |Σ| · O(c2) and
|Ec| = |Σ| ·O(c).

3 Automata

For the application of automated proofs of termination we are interested in finite
automata A that represent sets of descendants with respect to matchc(R).

An automaton (with epsilon transitions) A = (Σ, Q, I, F, δ) consists of an
alphabet Σ, a set of states Q, sets I, F ⊆ Q of initial and final states resp., and
a transition relation δ ⊆ Q× (Σ ∪ {ε})×Q. A path p→A q is called ε-minimal
if it neither starts nor ends with an ε-transition.

3

Definition 4. An automaton A over Σ is compatible (resp. exactly compati-
ble) with a rewriting system R over Σ and a language L over Σ if L ⊆ L(A)
(resp. →∗R (L) = L(A)) and for each pair of states p, q ∈ A and rule (`→ r) ∈ R

with p
`→A q, it holds that p

r→A q. If we omit L, then L = L(A).

We will construct compatible representations of descendants of L(A) under
rewriting. Therefore we give non-deterministic algorithms on automata.

Definition 5. For automata A,B over Σ and states p, q ∈ Q(A) and w ∈ Σ∗,

we write A
(p,w,q)−→ B if B is obtained from A by adding transitions and states:

– if |w| ≤ 1, then Q(B) = Q(A) and δ(B) = δ(A) ∪ (p, w, q), and
– if |w| > 1, then Q(B) = Q(A)] {s1, . . . , s|w|−1} and B contains a path

labelled w form p to q along the fresh states s1, . . . , s|w|−1.

Definition 6. For automata A,B over Σ and a rewriting system R over Σ, we
write A

R−→ B if there exist states p, q ∈ Q(A) and a rule (`→ r) ∈ R such that

there exists an ε-minimal path p
`→A q, ¬(p r→A q) and A

(p,r,q)−→ B.

Lemma 3. Let R be rewriting system over Σ such that (1) R is terminating and
context-free, or (2) R is inverse context-free. Then R−→ is terminating, and for
all automata A,B over Σ with A

R−→! B, the automaton B is exactly compatible
with R and L(A).

Lemma 4 (off-line construction). Let R be a string rewriting system with
(SN∩CF,CF−0)-decomposition (C,E) such that C is a conjugate of R. If we
have A0

C−→! A1
E−→! A2 for automata A0, A1, A2, then A2|Σ exactly compatible

with R and L(A0).

By A2|Σ we denote the restriction of A2 to the original alphabet. The off-line
construction is inefficient since it introduces states and transitions that turn out
to be unreachable later (i.e., they are in A2, but not in A2|Σ). We give a method
that constructs only accessible states and transitions.

Definition 7. For a rewrite system R with (SN∩CF,CF−0)-decomposition (C,E)

such that C is conjugate to R, and automata A,B we write A
R,C−→ B if there is

a rule (` → r) ∈ R with ` = xay such that p
x→ p′

a→ q′
y→ q is an ε-minimal

path in A with (p′, a, q′) ∈ δ(A) and ¬(p r→A q) and (a→←−x r−→y) ∈ C such that

A
(p′,←−x r−→y ,q′)−−−−→ B.

Lemma 5 (on-line construction). For R,C, E as in Definition 7, the relation
R,C−→ ◦ E−→! is terminating, and for automata A over Σ, B over Γ such that
A(

R,C−→ ◦ E−→!)!B, it holds that B|Σ is exactly compatible with R and L(A).

4

This construction can be used to search for a certificate of match-boundedness.
Starting with an automaton A for lift0(L), we use the decomposition (C ′, E′) of
match(R). The construction stops if and only if R is match-bounded, yielding
an exactly compatible automaton in the latter case.

Example 3. For R = {aa → aba} over Σ = {a, b}, we show how to verify that
R is match-bounded by 2 (and thus terminating) for L = Σ∗. We start with
an automaton A0 = 1a0,b0

$$
, representing lift0(L). (For all automata in this

example, state 1 is both initial and final.) A0 contains a match(R)-redex path
1 a0→ 1 a0→ 1. We choose the conjugate a0 → a1b1a1

−→a0 and add its right-hand side,

getting A1 (left). It contains two E′-redex paths 4
−→a0→ 1 a0→ 1 and 4

−→a0→ 1 a1→ 2, so
we add the transitions 4 ε→ 1 (middle), and 4 ε→ 2 resulting in A3 (right).

1

a0,b0

YY

a1 // 2
b1 // 3

a1
����

��
��

�

4
−→a0

^^>>>>>>>

1

a0,b0

YY

a1 // 2
b1 // 3

a1
����

��
��

�

4ε,−→a0

^^>>>>>>>

1

a0,b0

YY

a1 // 2
b1 // 3

a1
����

��
��

�

4ε,−→a0

^^>>>>>>>
ε

OO

Now there is a match(R)-redex path 3 a1→ 4 ε→ 1 a1→ 2. We choose a conjugate
a1 → a2b2a2

−→a1 and add its right-hand side as a path from 3 to 4 (left). Now

there is an E′-redex 7
−→a1→ 4 ε→ 1 a1→ 2, so we add a transition 7 ε→ 2, resulting in

A5 (right). A5 is compatible with match(R).

1

a0,b0

YY

a1 // 2
b1 // 3

a1
����

��
��

�

a2 // 5

b2

��

4

ε

OO

ε,−→a0

^^>>>>>>>
7−→a1

oo 6a2
oo

1

a0,b0

YY

a1 // 2
b1 // 3

a1

����
��

��
�

a2 // 5

b2

��

4

ε

OO

ε,−→a0

^^>>>>>>>
7−→a1

oo

ε

^^>>>>>>>
6a2

oo

To conclude, we consider the system R = {caac→ aaa, b→ aca, aba→ bb}.
Our on-line algorithm constructs (within a few seconds) an exactly compatible
automaton with about 30.000 states that certifies the RFC-match-bound 12.

References

1. R. V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. Theoret.
Comput. Sci., 19:231–251, 1982.

2. J. Endrullis. Effiziente Algorithmen für deleting und match-bounded Worterset-
zungssysteme. Diplomarbeit, Universität Leipzig, Germany, 2005.

3. A. Geser, D. Hofbauer and J. Waldmann. Match-bounded string rewriting systems.
Appl. Algebra Engrg. Comm. Comput., 15(3-4):149-171, 2004.

4. A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. Finding finite automata
that certify termination of string rewriting. Internat. J. Found. Comput. Sci.
16(3):471–486, 2005.

5. D. Hofbauer and J. Waldmann. Deleting string rewriting systems preserve regu-
larity. Theoret. Comput. Sci., 327(3):301–317, 2004.

6. J. Sakarovitch. Eléments de Théorie des Automates. Vuibert, Paris, 2003.

5

