Decomposing Terminating Rewrite Relations

Jörg Endrullis¹, Dieter Hofbauer², and Johannes Waldmann³

 ¹ Department of Computer Science, Vrije Universiteit Amsterdam De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands. Email: joerg@few.vu.nl
² Mühlengasse 16, D-34125 Kassel, Germany. Email: dieter@theory.informatik.uni-kassel.de
³ Hochschule für Technik, Wirtschaft und Kultur (FH) Leipzig Fb IMN, PF 30 11 66, D-04251 Leipzig, Germany. Email: waldmann@imn.htwk-leipzig.de

1 Introduction

We decompose an arbitrary rewrite relation into the product of a context-free system and an inverse context-free system with empty right-hand sides. By requiring both of these relations to be terminating, we lose computational completeness and arrive at the class of *deleting* rewriting systems [5].

Our new treatment allows to efficiently construct the rewrite closure of a regular language with respect to deleting or *match-bounded* [3] rewriting. Previous implementations of this method either used a complete but inefficient decomposition algorithm [5] leading to impracticable resource consumption, or incomplete approximation algorithms [4]. Our new algorithm is both efficient and exact, thereby improving the power of automated termination provers that use the method of match-bounds.

2 Decomposing String Rewriting Systems

We denote *context-free* rewriting systems $CF = \{R \mid \forall (\ell \to r) \in R : |\ell| \leq 1\}$, its subclass $CF_0 = \{R \mid \forall (\ell \to r) \in R : |\ell| = 0\}$ and $SN = \{R \mid SN(\to_R)\}$. For a class \mathcal{C} of string rewriting systems let $\mathcal{C}^- = \{R^- \mid R \in \mathcal{C}\}$.

Definition 1. Let R be a string rewriting system over Σ , let S and T be string rewriting systems over $\Gamma \supseteq \Sigma$. Then the pair (S,T) is a decomposition of R if

$$\to_R^* = (\to_S^* \circ \to_T^*) \cap (\varSigma^* \times \varSigma^*).$$

If additionally $S \in S$ and $T \in T$ for classes of string rewriting systems S and T, then (S,T) is called an (S,T)-decomposition of R.

The set of strings over a given alphabet is a monoid w.r.t. to concatenation, but this operation is not invertible. We introduce *formal left and right inverses* of letters. For a given alphabet Σ , define alphabets $\overrightarrow{\Sigma} = \{\overrightarrow{a} \mid a \in \Sigma\}$ and $\overleftarrow{\Sigma} = \{\overleftarrow{a} \mid a \in \Sigma\}$, and let $\overline{\Sigma} = \Sigma \cup \overrightarrow{\Sigma} \cup \overleftarrow{\Sigma}$. We extend $\overrightarrow{}$ and $\overleftarrow{}$ from letters to strings by $\overrightarrow{a_1 \cdots a_n} = \overrightarrow{a_n} \cdots \overrightarrow{a_1}$ and $\overleftarrow{a_1 \cdots a_n} = \overleftarrow{a_n} \cdots \overleftarrow{a_1}$. The behaviour of inverse letters is expressed by the rewriting systems $\overrightarrow{E_{\Sigma}} = \{\overrightarrow{a} a \to \epsilon \mid a \in \Sigma\}$ and $\overleftarrow{E_{\Sigma}} = \{a\overleftarrow{a} \to \epsilon \mid a \in \Sigma\}$. We write \overrightarrow{E} for $\overrightarrow{E_{\Sigma}}$ and \overleftarrow{E} for $\overleftarrow{E_{\Sigma}}$, if Σ is clear from the context. Let $E = \overrightarrow{E} \cup \overleftarrow{E}$. Observe that $\overrightarrow{x} x \to_E^* \epsilon \leftarrow_E^* x\overleftarrow{x}$ for $x \in \Sigma^*$. The above construction is standard. The congruence relation generated by \rightarrow_E is called the *Shamir congruence* in [6] II.6.2.

Definition 2. For string rewriting systems R and S over $\overline{\Sigma}$ write $R \cap S$ if S results from R by replacing a rule $xa \to r$ by $x \to r\overrightarrow{a}$, or replacing a rule $ax \to r$ by $x \to \overleftarrow{a}r$, where $a \in \Sigma$. Let \sim denote the equivalence generated by \sim . We say that R and S are conjugates if $R \sim S$.

A finite system R has only finitely many conjugates, among them R, so the union of all its conjugates is finite. In the sequel, we denote this union by C(R).

Lemma 1. For every string rewriting system R over Σ ,

(1) $\rightarrow^*_{C(R)\cup E} \cap (\Sigma^* \times \Sigma^*) \subseteq \rightarrow^*_R$ (correctness), and (2) $\rightarrow^*_R \subseteq \rightarrow^*_C \circ \rightarrow^*_E$ (completeness), for every context-free conjugate C of R.

Theorem 1. Let R be a string rewriting system over Σ . Then (C(R), E) is a decomposition of R, and if C is a context-free conjugate of R, then (C, E) is a (CF, CF_0^-) -decomposition of R.

Every string rewriting system has a (CF, CF_0^-) -decomposition (C, E). We are especially interested in terminating decompositions.

Definition 3. A string rewriting system R over Σ is called deleting if there is an irreflexive partial ordering > on Σ such that for each $(\ell \to r) \in R$ there is some letter a in ℓ so that for each letter b in r, a > b.

Lemma 2. For a string rewriting system R, the following conditions are equivalent: (1) There is a terminating context-free conjugate of R. (2) R is deleting.

Corollary 1. Let R be a deleting string rewriting system, then

(1) R has a $(SN \cap CF, SN \cap CF_0^-)$ -decomposition, and

(2) [5] R preserves regularity and R^- preserves context-freeness.

Example 1. The rewriting system $R = \{ba \to cb, bd \to d, cd \to de, d \to \epsilon\}$ is deleting w.r.t. the ordering a > b > c > d > e. A terminating context-free conjugate of R is $C = \{a \to b, cb, b \to dd, c \to ded, d \to \epsilon\}$.

Following [3], we annotate letters by numbers, called *match heights*, to get more detailed information on rewrite sequences. We switch to the extended alphabet $\Gamma = \Sigma \times \mathbb{N}$ and abbreviate a_n for (a, n) in Γ . Define morphisms base : $\Gamma \to \Sigma$, height : $\Gamma \to \mathbb{N}$, and, for $n \in \mathbb{N}$, lift_n : $\Sigma \to \Gamma$ by base $(a_n) = a$, height $(a_n) = n$ and $\operatorname{lift}_n(a) = a_n$. For a rewriting system R over Σ where $\epsilon \notin \operatorname{lhs}(R)$ define the rewriting system

 $\operatorname{match}(R) = \{\ell' \to \operatorname{lift}_{m+1}(r) \mid (\ell \to r) \in R, \operatorname{base}(\ell') = \ell, m = \min \operatorname{height}(\ell')\}$

over Γ . It simulates *R*-rewriting as $\rightarrow_R^* = \operatorname{lift}_0 \circ \rightarrow_{\operatorname{match}(R)}^* \circ$ base. For a system S over $\Sigma \times \mathbb{N}$ let S_c denote the restriction of S to $\Sigma \times \{0, \ldots, c\}$. The system R is called *match-bounded by* $c \in \mathbb{N}$ if $\rightarrow_{\operatorname{match}(R)}^* (\operatorname{lift}_0(\Sigma^*)) \subseteq (\Sigma \times \{0, \ldots, c\})^*$.

Each system $\operatorname{match}_{c}(R)$ is deleting w.r.t. the ordering defined by $a_{m} > b_{n}$ if m < n and hence has a $(\operatorname{SN} \cap \operatorname{CF}, \operatorname{SN} \cap \operatorname{CF}_{0}^{-})$ -decomposition (C, E). Due to the special and uniform structure of $\operatorname{match}(R)$, this decomposition can be improved. Giving up uniqueness of the inverses, we increase the "computational power" of inverses in using the rewriting system

$$E' = \{ \overrightarrow{a_i} a_j \to \epsilon, \ a_j \overleftarrow{a_i} \to \epsilon \mid a \in \Sigma, \ j \ge i \ge 0 \},\$$

again over $\overline{\Gamma}$. In this extended sense, $\overrightarrow{a_2}$ becomes the left inverse of all letters a_2, a_3, \ldots , for instance. Note that $E \subseteq E'$ and $C' \subseteq C$. With these more general inverses we obtain a succinct and efficient decomposition of match(R).

$$C' = \{ \operatorname{lift}_{i}(a) \to \operatorname{lift}_{i}(\overleftarrow{x}) \operatorname{lift}_{i+1}(r) \operatorname{lift}_{i}(\overrightarrow{y}) \mid (xay \to r) \in R, \ a \in \Sigma, \ x, y \in \Sigma^{*}, \ i \ge 0 \}$$

Theorem 2. (C', E') is a $(SN \cap CF, SN \cap CF_0^-)$ -decomposition of match(R).

Corollary 2. (C'_c, E'_c) is a $(SN \cap CF, SN \cap CF_0^-)$ -decomposition of $match_c(R)$.

Corollary 3. Every match-bounded string rewriting system has a $(SN \cap CF, SN \cap CF^{-})$ -decomposition.

Example 2. Take $R = \{aa \to aba\}$, and consider decompositions of match₂(R). This is Example 1 from [4], which contains a $(SN \cap CF, SN \cap CF^-)$ decomposition where both parts have 7 rules. By Corollary 2 we get $C'_2 = \{a_0 \to \overleftarrow{a_0}a_1b_1a_1, a_0 \to a_1b_1a_1\overrightarrow{a_0}, a_1 \to \overleftarrow{a_1}a_2b_2a_2, a_1 \to a_2b_2a_2\overrightarrow{a_1}\}$ with 4 rules, and $E'_2 = \{\overrightarrow{a_0}a_0 \to \epsilon, \overrightarrow{a_0}a_1 \to \epsilon, \ldots\}$ with 24 rules. In contrast, C_2 contains C'_2 and 6 additional rules $a_0 \to \overleftarrow{a_1}a_1a_1a_1, a_0 \to a_1b_1a_1\overrightarrow{a_1}, \ldots$, while $E_2 \subset E'_2$ and $|E_2| = 12$.

The result states that the drastic reduction from C_c to C'_c can be compensated by moderately enlarging E_c to E'_c . Note that $|C'_c| \leq |R| \cdot m \cdot c$ and $|C_c| \leq |R| \cdot m \cdot (c+1)^m$ for $m = \max\{|\ell| \mid \ell \in \text{lhs}(R)\}$, whereas $|E'_c| = |\Sigma| \cdot O(c^2)$ and $|E_c| = |\Sigma| \cdot O(c)$.

3 Automata

For the application of automated proofs of termination we are interested in finite automata A that represent sets of descendants with respect to $\operatorname{match}_{c}(R)$.

An automaton (with epsilon transitions) $A = (\Sigma, Q, I, F, \delta)$ consists of an alphabet Σ , a set of states Q, sets $I, F \subseteq Q$ of initial and final states resp., and a transition relation $\delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$. A path $p \to_A q$ is called ϵ -minimal if it neither starts nor ends with an ϵ -transition.

Definition 4. An automaton A over Σ is compatible (resp. exactly compatible) with a rewriting system R over Σ and a language L over Σ if $L \subseteq \mathcal{L}(A)$ (resp. $\rightarrow_R^* (L) = \mathcal{L}(A)$) and for each pair of states $p, q \in A$ and rule $(\ell \to r) \in R$ with $p \stackrel{\ell}{\to}_A q$, it holds that $p \stackrel{r}{\to}_A q$. If we omit L, then $L = \mathcal{L}(A)$.

We will construct compatible representations of descendants of $\mathcal{L}(A)$ under rewriting. Therefore we give non-deterministic algorithms on automata.

Definition 5. For automata A, B over Σ and states $p, q \in Q(A)$ and $w \in \Sigma^*$, we write $A \stackrel{(p,w,q)}{\longrightarrow} B$ if B is obtained from A by adding transitions and states:

- $-if |w| \leq 1$, then Q(B) = Q(A) and $\delta(B) = \delta(A) \cup (p, w, q)$, and
- if |w| > 1, then $Q(B) = Q(A) \uplus \{s_1, \ldots, s_{|w|-1}\}$ and B contains a path labelled w form p to q along the fresh states $s_1, \ldots, s_{|w|-1}$.

Definition 6. For automata A, B over Σ and a rewriting system R over Σ , we write $A \xrightarrow{R} B$ if there exist states $p, q \in Q(A)$ and a rule $(\ell \to r) \in R$ such that there exists an ϵ -minimal path $p \xrightarrow{\ell}_A q$, $\neg(p \xrightarrow{r}_A q)$ and $A \xrightarrow{(p,r,q)} B$.

Lemma 3. Let R be rewriting system over Σ such that (1) R is terminating and context-free, or (2) R is inverse context-free. Then \xrightarrow{R} is terminating, and for all automata A, B over Σ with $A \xrightarrow{R} B$, the automaton B is exactly compatible with R and $\mathcal{L}(A)$.

Lemma 4 (off-line construction). Let R be a string rewriting system with $(SN \cap CF, CF_0^-)$ -decomposition (C, E) such that C is a conjugate of R. If we have $A_0 \xrightarrow{C} A_1 \xrightarrow{E} A_2$ for automata A_0, A_1, A_2 , then $A_2|_{\Sigma}$ exactly compatible with R and $\mathcal{L}(A_0)$.

By $A_2|_{\Sigma}$ we denote the restriction of A_2 to the original alphabet. The off-line construction is inefficient since it introduces states and transitions that turn out to be unreachable later (i.e., they are in A_2 , but not in $A_2|_{\Sigma}$). We give a method that constructs only accessible states and transitions.

Definition 7. For a rewrite system R with $(SN \cap CF, CF_0^-)$ -decomposition (C, E)such that C is conjugate to R, and automata A, B we write $A \xrightarrow{R,C} B$ if there is a rule $(\ell \to r) \in R$ with $\ell = xay$ such that $p \xrightarrow{x} p' \xrightarrow{a} q' \xrightarrow{y} q$ is an ϵ -minimal path in A with $(p', a, q') \in \delta(A)$ and $\neg (p \xrightarrow{r}_A q)$ and $(a \to \overleftarrow{x} r \overrightarrow{y}) \in C$ such that $A \xrightarrow{(p', \overleftarrow{x} r \overrightarrow{y}, q')} B.$

Lemma 5 (on-line construction). For R, C, E as in Definition 7, the relation $\xrightarrow{R,C} \circ \xrightarrow{E} !$ is terminating, and for automata A over Σ , B over Γ such that $A(\xrightarrow{R,C} \circ \xrightarrow{E} !)!B$, it holds that $B|_{\Sigma}$ is exactly compatible with R and $\mathcal{L}(A)$.

This construction can be used to search for a certificate of match-boundedness. Starting with an automaton A for lift₀(L), we use the decomposition (C', E') of match(R). The construction stops if and only if R is match-bounded, yielding an exactly compatible automaton in the latter case.

Example 3. For $R = \{aa \to aba\}$ over $\Sigma = \{a, b\}$, we show how to verify that R is match-bounded by 2 (and thus terminating) for $L = \Sigma^*$. We start with an automaton $A_0 = a_0, b_0 \bigcirc 1$, representing $\operatorname{lift}_0(L)$. (For all automata in this example, state 1 is both initial and final.) A_0 contains a match(R)-redex path $1 \stackrel{a_0}{\to} 1 \stackrel{a_0}{\to} 1$. We choose the conjugate $a_0 \to a_1 b_1 a_1 \overrightarrow{a_0}$ and add its right-hand side, getting A_1 (left). It contains two E'-redex paths $4 \stackrel{\overrightarrow{a_0}}{\to} 1 \stackrel{a_0}{\to} 1$ and $4 \stackrel{\overrightarrow{a_0}}{\to} 1 \stackrel{a_1}{\to} 2$, so we add the transitions $4 \stackrel{\epsilon}{\to} 1$ (middle), and $4 \stackrel{\epsilon}{\to} 2$ resulting in A_3 (right).

Now there is a match(R)-redex path $3 \stackrel{a_1}{\to} 4 \stackrel{\epsilon}{\to} 1 \stackrel{a_1}{\to} 2$. We choose a conjugate $a_1 \to a_2 b_2 a_2 \overrightarrow{a_1}$ and add its right-hand side as a path from 3 to 4 (left). Now there is an E'-redex $7 \stackrel{\overrightarrow{a_1}}{\to} 4 \stackrel{\epsilon}{\to} 1 \stackrel{a_1}{\to} 2$, so we add a transition $7 \stackrel{\epsilon}{\to} 2$, resulting in A_5 (right). A_5 is compatible with match(R).

To conclude, we consider the system $R = \{caac \rightarrow aaa, b \rightarrow aca, aba \rightarrow bb\}$. Our on-line algorithm constructs (within a few seconds) an exactly compatible automaton with about 30.000 states that certifies the RFC-match-bound 12.

References

- R. V. Book, M. Jantzen, and C. Wrathall. Monadic Thue systems. *Theoret. Comput. Sci.*, 19:231–251, 1982.
- 2. J. Endrullis. Effiziente Algorithmen für deleting und match-bounded Wortersetzungssysteme. Diplomarbeit, Universität Leipzig, Germany, 2005.
- A. Geser, D. Hofbauer and J. Waldmann. Match-bounded string rewriting systems. Appl. Algebra Engrg. Comm. Comput., 15(3-4):149-171, 2004.
- A. Geser, D. Hofbauer, J. Waldmann, and H. Zantema. Finding finite automata that certify termination of string rewriting. *Internat. J. Found. Comput. Sci.* 16(3):471–486, 2005.
- D. Hofbauer and J. Waldmann. Deleting string rewriting systems preserve regularity. *Theoret. Comput. Sci.*, 327(3):301–317, 2004.
- 6. J. Sakarovitch. Eléments de Théorie des Automates. Vuibert, Paris, 2003.